Theoretical study of the truncated hemoglobin HbN: Exploring the molecular basis of the NO detoxification mechanism

Mycobacterium tuberculosis is the causative agent of human tuberculosis. The nitric oxide reaction with oxy-truncated hemoglobin N (IrHbN) has been proposed to be responsible for the resistance mechanism by which this microorganism can evade the toxic effects of NO. In this work, we explore the mole...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Crespo, A.
Otros Autores: Martí, M.A, Kalko, S.G, Morreale, A., Orozco, M., Gelpi, J.L, Luque, F.J, Estrin, D.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2005
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13516caa a22017537a 4500
001 PAPER-4178
003 AR-BaUEN
005 20230518203341.0
008 190411s2005 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-16244367739 
024 7 |2 cas  |a glycine, 56-40-6, 6000-43-7, 6000-44-8; hemoglobin, 9008-02-0; nitric oxide, 10102-43-9; tyrosine, 16870-43-2, 55520-40-6, 60-18-4; Heme, 14875-96-8; Hemoglobins; Nitric Oxide, 10102-43-9; Oxygen, 7782-44-7 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JACSA 
100 1 |a Crespo, A. 
245 1 0 |a Theoretical study of the truncated hemoglobin HbN: Exploring the molecular basis of the NO detoxification mechanism 
260 |c 2005 
270 1 0 |m Luque, F.J.; Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; email: fjluque@ub.edu 
506 |2 openaire  |e Política editorial 
504 |a Bloom, B.R., (1994) Tuberculosis: Pathogenesis, Protection and Control, , ASM Press: Washington D.C 
504 |a MacMicking, J.D., North, R.J., LaCourse, R., Mudgett, J.S., Shah, S.K., Nathan, C.F., (1997) Proc. Natl. Acad. Sci. U.S.A., 94, pp. 5243-5248 
504 |a Clark, I.A., Rocket, K.A., (1996) Adv. Parasitol., 37, pp. 1-56 
504 |a Colasanti, M., Gradoni, L., Mattu, M., Persichini, T., Salvati, L., Venturini, G., Ascenzi, P., (2002) Int. J. Mol. Med., 9, pp. 131-134 
504 |a Gardner, P.R., Gardner, A.M., Martin, A.M., Dou, Y., Li, T., Olson, J.S., Zhu, H., Riggs, A.F., (2000) J. Biol. Chem., 275, pp. 12581-12589 
504 |a Liu, L., Zeng, M., Hausladen, A., Heitman, J., Stamler, J.S., (2000) Proc. Natl. Acad. Sci. U.S.A., 97, pp. 4672-4676 
504 |a Eich, R.F., Li, T., Lemon, D.D., Doherty, D.H., Curry, S.R., Aitken, J.F., Mathews, A.J., Olson, J.S., (1996) Biochemistry, 35, pp. 6976-6983 
504 |a Ascenzi, P., Slavati, L., Brunori, M., (2001) FEBS Lett., 501, pp. 103-105 
504 |a Pesce, A., Bolognesi, M., Bocedi, A., Ascenzi, P., Dewilde, S., Moens, L., Hankeln, T., Burmester, T., (2002) EMBO Rep., 3, pp. 1146-1151 
504 |a Pesce, A., Dewilde, S., Nardini, M., Moens, L., Ascenzi, P., Hankeln, T., Burmester, T., Bolognesi, M., (2003) Structure, 11, pp. 1087-1095 
504 |a Couture, M., Yeh, S., Wittenberg, B.A., Wittenberg, J.B., Ouellet, Y., Rousseau, D.L., Guertin, M., (1999) Proc. Natl. Acad. Sci. U.S.A., 96, pp. 11223-11228 
504 |a Moens, L., Vanfleteren, J., Van Der Peer, Y., Peeters, K., Kapp, O., Czeluzniak, J., Goodman, M., Vinogradov, S., (1996) Mol. Biol. Evol., 13, pp. 324-333 
504 |a Couture, M., Chamberland, H., St-Pierre, B., Lafontaine, J., Guertin, M., (1994) Mol. Gen. Genet., 243, pp. 185-197 
504 |a Pesce, A., Couture, M., Dewilde, S., Guertin, M., Yamauchi, K., Ascenzi, P., Moens, L., Bolognesi, M., (2000) EMBO J., 19, pp. 2424-2434 
504 |a Milani, M., Pesce, A., Ouellet, Y., Ascenzi, P., Guertin, M., Bolognesi, M., (2001) EMBO J., 20, pp. 3902-3909 
504 |a Milani, M., Pesce, A., Ouellet, Y., Dewilde, S., Friedman, J., Ascenzi, P., Guertin, M., Bolognesi, M., (2004) J. Biol. Chem., 279, pp. 21520-21525 
504 |a Yeh, S.R., Couture, M., Ouellet, Y., Guertin, M., Rousseau, D.L., (2000) J. Biol. Chem., 275, pp. 1679-1684 
504 |a Ouellet, H., Ouellet, Y., Richard, C., Labarre, M., Wittenberg, B., Wittenberg, J., Guertin, M., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 5902-5907 
504 |a Mukai, M., Ouellet, Y., Ouellet, H., Guertin, M., Yeh, S., (2004) Biochemistry, 43, pp. 2764-2770 
504 |a Jorgensen, W.L., Chandrasekar, J., Madura, J., Impey, R.W., Klein, M.L., (1983) J. Chem. Phys., 79, pp. 926-935 
504 |a Luty, B.A., Tironi, I.G., Van Gunsteren, W.F., (1995) J. Chem. Phys., 103, pp. 3014-3021 
504 |a Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C., (1977) J. Comput. Phys., 23, pp. 327-341 
504 |a Wang, J., Cieplak, P., Kollman, P.A., (2000) J. Comput. Chem., 21, p. 1049 
504 |a Bayly, C.I., Cieplak, P., Cornell, W.D., Kollman, P.A., (1993) J. Phys. Chem., 97, pp. 10269-10280 
504 |a Banci, L., (2003) Curr. Opin. Chem. Biol., 7, pp. 143-149 
504 |a Laskowski, R.A., (1995) J. Mol. Graphics, 13, pp. 323-330 
504 |a Gelpí, J.L., Kalko, S., De La Cruz, X., Barril, X., Cirera, J., Luque, F.J., Orozco, M., (2001) Proteins, 45, pp. 428-437 
504 |a García, A.E., (1992) Phys. Rev. Lett., 68, pp. 2696-2699 
504 |a Rueda, M., Kalko, S.G., Luque, F.J., Orozco, M., (2003) J. Am. Chem. Soc., 125, pp. 8007-8014 
504 |a Fradera, X., Marquez, M., Smith, B., Orozco, M., Luque, F.J., (2003) J. Org. Chem., 68, pp. 4663-4673 
504 |a Wlodek, S.T., Clark, T.W., Scott, L.R., McCammon, J.A., (1997) J. Am. Chem. Soc., 119, pp. 9513-9522 
504 |a Warshel, A., Levitt, M., (1976) J. Mol. Biol., 103, pp. 227-249 
504 |a Zhang, X., Harrison, D.H.T., Cui, Q., (2002) J. Am. Chem. Soc., 124, pp. 14871-14878 
504 |a Ryde, U., (2003) Curr. Opin. Chem. Biol., 7, pp. 136-142 
504 |a Ridder, L., Harvey, J.N., Rietjens, I.M.C.M., Vervoort, J., Mulholland, A.J., (2003) J. Phys. Chem. B, 107, pp. 2118-2126 
504 |a Schöneboom, J.C., Cohen, S., Lin, H., Shaik, S., Thiel, W., (2004) J. Am. Chem. Soc., 126, pp. 4017-4034 
504 |a Devi-Kesavan, L.S., Gao, J., (2003) J. Am. Chem. Soc., 125, pp. 1532-1540 
504 |a Soler, J.M., Artacho, E., Gale, J., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., (2002) J. Phys.: Condens. Matter, 14, pp. 2745-2779 
504 |a Martí, M.A., Scherlis, D.A., Doctorovich, F.A., Ordejón, P., Estrin, D.A., (2003) J. Biol. Inorg. Chem., 6, pp. 595-600 
504 |a Troullier, N., Martins, J.L., (1991) Phys. Rev. B, 43, pp. 1993-2006 
504 |a Louie, S.G., Froyen, S., Cohen, M.L., (1982) Phys. Rev. B, 26, pp. 1738-1742 
504 |a Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, pp. 3865-3868 
504 |a Eichinger, M., Tavan, P., Hutter, J., Parrnello, M., (1999) J. Chem. Phys., 110, pp. 10452-10467 
504 |a Rovira, C., Schultze, B., Eichinger, M., Evanseck, J.D., Parrinello, M., (2001) Biophys. J., 81, pp. 435-445 
504 |a Scherlis, D.A., Martí, M.A., Ordejón, P., Estrin, D.A., (2002) Int. J. Quantum Chem., 90, pp. 1505-1514 
504 |a Rovira, C., Kunc, K., Hutter, J., Ballone, P., Parrinello, M., (1997) J. Phys. Chem. A, 101, pp. 8914-8925 
504 |a Crespo, A., Scherlis, D.A., Martí, M.A., Ordejón, P., Roitberg, A.E., Estrin, D.A., (2003) J. Phys. Chem. B, 107, pp. 13728-13736 
504 |a Kachalova, G.S., Popov, A.N., Bartunik, H.D., (1999) Science, 284, pp. 473-476 
504 |a Englander, S.W., Kallenbach, N.R.Q., (1983) Rev. Biophys., 16, pp. 521-655 
504 |a Wuthrich, K.Q., (1987) Rev. Biophys., 19, pp. 3-5 
504 |a Amadei, A., Linssen, A.B., Berendsen, H.J., (1993) Proteins, 17, pp. 412-425 
504 |a McCammon, J.A., Harvey, S.C., (1987) Dynamics of Proteins and Nucleic Acids, , Cambridge University Press: New York 
504 |a Gogonea, V., Osawa, E., (1995) J. Comput. Chem., 16, pp. 817-842 
504 |a Shen, T., Tai, K., Henchman, R.H., McCammon, J.A., (2002) Acc. Chem. Res., 35, pp. 332-340 
504 |a Scherlis, D.A., Estrin, D.A., (2001) J. Am. Chem. Soc., 123, pp. 8436-8437 
504 |a Bolognesi, M., personal communication; Kundu, S., Snyder, B., Das, K., Chowdhury, P., Park, J., Petrich, J.W., Hargrove, M.S., (2002) Struct. Funct. Genet., 46, pp. 268-277 
504 |a Jain, R., Chan, M.K., (2003) J. Biol. Inorg. Chem., 8, pp. 1-11 
504 |a Jensen, M.P., Riley, D.P., (2002) Inorg. Chem., 41, pp. 4788-4797 
504 |a Shimanovich, R., Groves, J.T., (2001) Arch. Biochem. Biophys., 387, pp. 307-317 
504 |a Herald, S., Shivashankar, K., (2003) Biochemistry, 42, pp. 14036-14046 
504 |a Guallar, V., Friesner, R.A., (2004) J. Am. Chem. Soc., 126, pp. 8501-8508 
504 |a Schöneboom, J.C., Lin, H., Reuter, N., Thiel, W., Cohen, S., Ogliaro, F., Shaik, S., (2002) J. Am. Chem. Soc., 124, pp. 8142-8151 
504 |a Poole, R.K., Hughes, M.N., (2000) Mol. Microbiol., 36, pp. 775-783 
504 |a Flögel, U., Merx, M.W., Gödecke, A., Decking, U.K., Schrader, J., (2001) Proc. Natl. Acad. Sci. U.S.A., 98, pp. 735-740 
504 |a Frauenfelder, H., McMahan, B.H., Austin, R.H., Chu, K., Groves, J.T., (2001) Proc. Natl. Acad. Sci. U.S.A., 98, pp. 2370-2374 
504 |a Couture, M., Das, T.K., Lee, H.C., Peisach, J., Rousseau, D.L., Wittenberg, B.A., Wittenberg, J.B., Guertin, M., (1999) J. Biol. Chem., 274, pp. 6898-6910 
504 |a Das, T.K., Weber, R.E., Dewilde, S., Wittenberg, J.B., Wittenberg, B.A., Yamauchi, K., Van Hauwaert, M.L., Rousseau, D.L., (2000) Biochemistry, 39, p. 14330 
504 |a Das, T.K., Couture, M., Ouellet, Y., Guertin, M., Rousseau, D.L., (2001) Proc. Natl. Acad. Sci. U.S.A., 98, pp. 479-484 
520 3 |a Mycobacterium tuberculosis is the causative agent of human tuberculosis. The nitric oxide reaction with oxy-truncated hemoglobin N (IrHbN) has been proposed to be responsible for the resistance mechanism by which this microorganism can evade the toxic effects of NO. In this work, we explore the molecular basis of the NO detoxification mechanism using a combination of classical and hybrid quantum-classical (QM-MM) simulation techniques. We have investigated the structural flexibility of the protein, the ligand affinity properties, and the nitric oxide reaction with coordinated O2. The analysis of the classical MD trajectory allowed us to identify Phe62 as the gate of the main channel for ligand diffusion to the active site. Moreover, the opening of the channel stems from the interplay between collective backbone motions and local rearrangements in the side chains of the residues that form the bottleneck of the tunnel. Even though the protein environment is not found to make a significant contribution to the heme moiety catalyzed reaction, the binding site influences the physiological function of the enzyme at three different levels. First, by isolating the intermediates formed in the reaction, it prevents nondesired reactions from proceeding. Second, it modulates the ligand (O2, NO) affinity of the protein, which can be ascribed to both distal and proximal effects. Finally, the stabilization of the Tyr33-Gln58 pair upon O2 binding might alter the essential dynamics of the protein, leading in turn to a mechanism for ligand-induced regulation. © 2005 American Chemical Society.  |l eng 
593 |a Departamento de Quimica Inorganica, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (C1428EHA), Argentina 
593 |a Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain 
593 |a Dept. de Bioquim. i Biol. Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona, Spain 
593 |a Bioinformatics Unit, IDIBAPS, c/Villaroel 170, 08036 Barcelona, Spain 
690 1 0 |a BACTERIA 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a DIFFUSION 
690 1 0 |a DISEASES 
690 1 0 |a MICROORGANISMS 
690 1 0 |a PROTEINS 
690 1 0 |a QUANTUM THEORY 
690 1 0 |a REACTION KINETICS 
690 1 0 |a TOXICITY 
690 1 0 |a DETOXIFICATIONS 
690 1 0 |a MYCOBACTERIUM TUBERCULOSIS 
690 1 0 |a NITRIC OXIDES 
690 1 0 |a TOXIC EFFECTS 
690 1 0 |a NITROGEN COMPOUNDS 
690 1 0 |a GLYCINE 
690 1 0 |a HEMOGLOBIN 
690 1 0 |a LIGAND 
690 1 0 |a NITRIC OXIDE 
690 1 0 |a TYROSINE 
690 1 0 |a ARTICLE 
690 1 0 |a BACTERIAL INFECTION 
690 1 0 |a BINDING SITE 
690 1 0 |a CELL SURVIVAL 
690 1 0 |a DETOXIFICATION 
690 1 0 |a ENZYME ACTIVE SITE 
690 1 0 |a GENE REARRANGEMENT 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a MYCOBACTERIUM TUBERCULOSIS 
690 1 0 |a QUANTUM THEORY 
690 1 0 |a SIMULATION 
690 1 0 |a HEME 
690 1 0 |a HEMOGLOBINS 
690 1 0 |a METABOLIC DETOXICATION, DRUG 
690 1 0 |a MODELS, MOLECULAR 
690 1 0 |a MYCOBACTERIUM TUBERCULOSIS 
690 1 0 |a NITRIC OXIDE 
690 1 0 |a OXIDATION-REDUCTION 
690 1 0 |a OXYGEN 
690 1 0 |a PROTEIN CONFORMATION 
690 1 0 |a QUANTUM THEORY 
690 1 0 |a THERMODYNAMICS 
650 1 7 |2 spines  |a TUBERCULOSIS 
700 1 |a Martí, M.A. 
700 1 |a Kalko, S.G. 
700 1 |a Morreale, A. 
700 1 |a Orozco, M. 
700 1 |a Gelpi, J.L. 
700 1 |a Luque, F.J. 
700 1 |a Estrin, D.A. 
773 0 |d 2005  |g v. 127  |h pp. 4433-4444  |k n. 12  |p J. Am. Chem. Soc.  |x 00027863  |w (AR-BaUEN)CENRE-19  |t Journal of the American Chemical Society 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-16244367739&doi=10.1021%2fja0450004&partnerID=40&md5=5e0f372311b4d34c2e22eb68d539de7b  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/ja0450004  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00027863_v127_n12_p4433_Crespo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v127_n12_p4433_Crespo  |y Registro en la Biblioteca Digital 
961 |a paper_00027863_v127_n12_p4433_Crespo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 65131