Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform

The propagation of a laser beam through turbulent media is modeled as a fractional Brownian motion (fBm). Time series corresponding to the center position of the laser spot (coordinates x and y) after traveling across air in turbulent motion, with different strength, are analyzed by the wavelet theo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Zunino, L.
Otros Autores: Pérez, D.G, Garavaglia, Mario José, Rosso, O.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2004
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08878caa a22010337a 4500
001 PAPER-4554
003 AR-BaUEN
005 20250403084148.0
008 190411s2004 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-9544221056 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Zunino, L. 
245 1 0 |a Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform 
260 |c 2004 
270 1 0 |m Zunino, L.; Departamento de Física, Facultad de Ciencias Exactas, Ctr. de Invest. Óptics, CC. 124 Correo Central, 1900 La Plata, Buenos Aires, Argentina; email: lucianoz@ciop.unlp.edu.ar 
504 |a Aubert, H., Jaggard, D.L., Fractal superlattices and their wavelet analyses (1998) Opt. Commun., 149, pp. 207-212 
504 |a Degaudenzi, M.E., Arizmendi, C.M., Wavelet-based fractal analysis of electrical power demand (2000) Fractals, 8 (3), pp. 239-245 
504 |a Frantziskonis, G., Hansen, A., Wavelet-based multiscaling in self-affine random media (2000) Fractals, 8 (4), pp. 403-411 
504 |a Mandelbrot, B.B., Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier (1974) J. Fluid Mech., 62, pp. 331-358 
504 |a Mandelbrot, B.B., On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars (1975) J. Fluid Mech., 72, pp. 401-416 
504 |a Sreenivasan, K., Meneveau, C., The fractal facets of turbulence (1986) J. Fluid Mech., 173, pp. 357-386 
504 |a Meneveau, C., Sreenivasan, K., The multifractal nature of the turbulent energy dissipation (1991) J. Fluid Mech., 224, pp. 429-484 
504 |a Scotti, A., Meneveau, C., Saddoughi, S., Fractal dimension of velocity signals in high-Reynoldsnumber hydrodynamic turbulence (1995) Phys. Rev., E51 (6), pp. 5594-5608 
504 |a Hudgins, L., Friehe, C., Mayer, M., Wavelet transforms and atmospheric turbulence (1993) Phys. Rev. Lett., 71 (20), pp. 3279-3282 
504 |a Qian, M., Liu, S., Scale exponents of atmospheric turbulence under different stratifications (1996) Fractals, 4 (1), pp. 45-48 
504 |a Katul, G., Vidakovic, B., Albertson, J., Estimating global and local scaling exponents in turbulent flows using wavelet transformations (2001) Phys. Fluids, 13, pp. 241-250 
504 |a Papanicolaou, G., Sølna, K., Wavelet based estimation of local Kolmogorov turbulence (2002) Long-range Dependence: Theory and Applications, pp. 473-505. , eds. P. Doukhan, G. Oppenheim and M. S. Taqqu (Birkhauser) 
504 |a Mandelbrot, B.B., Van Ness, J., Fractional Brownian motion, fractional noises and applications (1968) SIAM Rev., 10 (4), pp. 422-437 
504 |a Hurst, H., Long-term storage capacity of reservoirs (1951) Trans. Am. Soc. Civil Eng., 116, pp. 770-808 
504 |a Pérez, D.G., (2003) Propagación de Luz en Medios Turbulentos, , http://arxiv.org/abs/physics/0307144, (in Spanish), Tesis de la Univer sidad Nacional de La Plata, Argentina 
504 |a Lévy-Vehel, J., (2001) FracLab: A Fractal Analysis Tool-box for Signal and Image Processing, , http://fractales.inria.fr/ 
504 |a Feder, J., (1988) Fractals, pp. 170-171. , Plenum Press, New York 
504 |a Helland, K., Van Atta, C.W., The "Hurst phenomenon" in grid turbulence (1978) J. Fluid Mech., 85, pp. 573-589 
504 |a Gabor, D., Theory of communication (1946) J. IEEE (London), 93, pp. 429-457 
504 |a Daubechies, I., (1992) Ten Lectures on Wavelets, , SIAM, Philadelphia 
504 |a Aldroubi, A., Unser, M., (1996) Wavelets in Medicine and Biology, , CRC Press, Boca Raton 
504 |a Mallat, S., (1999) A Wavelet Tour of Signal Processing, 2nd Edn., , Academic Press, San Diego 
504 |a Samar, V., Bopardikar, A., Rao, R., Swartz, K., Wavelet analysis of neuroelectric waveforms: A conceptual tutorial (1999) Brain Lang., 66, pp. 7-60 
504 |a Thévenaz, P., Blue, T., Unser, M., Interpolation revisited (2000) IEEE Trans. Med. Imaging, 19, pp. 739-758 
504 |a Unser, M., Spline: A perfect fit for signal and image processing (1999) IEEE Signal Process. Mag., 16, pp. 22-38 
504 |a Shannon, C.E., A mathematical theory of communication (1948) Bell Syst. Technol. J., 27, pp. 379-423 
504 |a Blanco, S., Figliola, A., Quiroga, R.Q., Rosso, O.A., Serrano, E., Time-frequency analysis of electroencephalogram series (III): Wavelet packets and information cost function (1998) Phys. Rev., E57, pp. 932-940 
504 |a Rosso, O.A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M., Başar, E., Wavelet entropy: A new tool for analysis of short duration brain electrical signals (2001) J. Neurosci. Meth., 105, pp. 65-75 
504 |a Rosso, O.A., Mairal, M.L., Characterization of time dynamical evolution of electroencephalographic epileptic records (2002) Physica, A312, pp. 469-504 
504 |a Peréz, A., D'Attellis, C.E., Rapacioli, M., Hirchoren, G.A., Flores, V., Analyzing blood cell concentration as a stochastic process (2001) IEEE Eng. Med. Biol., (NOVEMBER-DECEMBER), pp. 170-175 
504 |a Flandrin, P., On the spectrum of fractional Brownian motions (1989) IEEE Trans. Inf. Theory, IT-35 (1), pp. 197-199 
504 |a Flandrin, P., Wavelet analysis and synthesis of fractional Brownian motion (1992) IEEE Trans. Inf. Theory, IT-38 (2), pp. 910-917 
504 |a Beran, J., (1994) Statistics for Long-memory Processes, pp. 81-120. , Chapman and Hall, New York 
504 |a Taqqu, M., Teverovsky, V., Willinger, W., Estimators for long-range dependence: An empirical study (1995) Fractals, 3 (4), pp. 785-798 
504 |a Consortini, A., Sun, Y.Y., Li, Z.P., Conforti, G., A mixed method for measuring the inner scale of atmospheric turbulence (1990) J. Mod. Opt., 37 (10), pp. 1555-1560 
504 |a Consortini, A., O'Donnell, K., Beam wandering of thin parallel beams through atmospheric turbulence (1991) Waves Random Media, 3, pp. S11-S28 
504 |a Peltier, R.F., Lévy-Vehel, J., (1995) Multifractional Brownian Motion: Definition and Preliminary Results, , Research Report No. RR-2645, INRIA 
506 |2 openaire  |e Política editorial 
520 3 |a The propagation of a laser beam through turbulent media is modeled as a fractional Brownian motion (fBm). Time series corresponding to the center position of the laser spot (coordinates x and y) after traveling across air in turbulent motion, with different strength, are analyzed by the wavelet theory. Two quantifiers are calculated, the Hurst exponent, H, and the mean Normalized Total Wavelet Entropy, S̃WT. It is verified that both quantifiers give complementary information about the turbulence.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: This work was partially supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. 
593 |a Departamento de Física, Facultad de Ciencias Exactas, Ctr. de Invest. Óptics, CC. 124 Correo Central, 1900 La Plata, Buenos Aires, Argentina 
593 |a Instituto de Cálculo, Fac. de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Ciudad de Buenas Aires, Argentina 
690 1 0 |a FRACTIONAL BROWNIAN MOTION 
690 1 0 |a HURST EXPONENT 
690 1 0 |a LASER PROPAGATION 
690 1 0 |a SIGNAL ENTROPY 
690 1 0 |a TIME-FREQUENCY SIGNAL ANALYSIS 
690 1 0 |a TURBULENCE 
690 1 0 |a WAVELET ANALYSIS 
690 1 0 |a CHARACTERIZATION 
690 1 0 |a ENTROPY 
690 1 0 |a FRACTALS 
690 1 0 |a TIME SERIES ANALYSIS 
690 1 0 |a TURBULENT FLOW 
690 1 0 |a WAVELET TRANSFORMS 
690 1 0 |a FRACTIONAL BROWNIAN MOTION 
690 1 0 |a HURST EXPONENT 
690 1 0 |a LASER PROPAGATION 
690 1 0 |a SIGNAL ENTROPY 
690 1 0 |a TIME-FRQUENCY SIGNAL ANALYSIS 
690 1 0 |a WAVELET ANALYSIS 
690 1 0 |a LASERS 
700 1 |a Pérez, D.G. 
700 1 |a Garavaglia, Mario José 
700 1 |a Rosso, O.A. 
773 0 |d 2004  |g v. 12  |h pp. 223-233  |k n. 2  |p Fractals  |x 0218348X  |w (AR-BaUEN)CENRE-1709  |t Fractals 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-9544221056&doi=10.1142%2fS0218348X04002471&partnerID=40&md5=4d3ecfbce8359bfbb7a6b78049b6f481  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1142/S0218348X04002471  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0218348X_v12_n2_p223_Zunino  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0218348X_v12_n2_p223_Zunino  |y Registro en la Biblioteca Digital 
961 |a paper_0218348X_v12_n2_p223_Zunino  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 65507