On the Structure of μ-Classes

We prove that, if μ < ⌊n/2⌋, then every rational parametrization of degree n and class μ is a limit of parametrizations of the same degree and class μ + 1. This property was conjectured in Cox, D., Sederberg, T., Chen, F. [Cox, D., Sederberg, T., Chen, F. (1998b)] and its validity allows an expli...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: D'Andrea, C.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Marcel Dekker Inc. 2004
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03547caa a22004217a 4500
001 PAPER-4710
003 AR-BaUEN
005 20230518203417.0
008 190411s2004 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-1542403995 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a D'Andrea, C. 
245 1 3 |a On the Structure of μ-Classes 
260 |b Marcel Dekker Inc.  |c 2004 
270 1 0 |m D'Andrea, C.; Departamento de Matemática, FCEyN, Ciudad Universitaria, Buenos Aires 1428, Argentina; email: cdandrea@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Chen, F., Sederberg, T., A new implicit representation of a planar rational curve with high order singularity (2002) Comput. Aided Geom. Design, 19, pp. 151-167. , 9.2 
504 |a Chen, F., Wang, W., (2002) The μ-Basis of a Planar Rational Curve- Properties Computation, , Preprint 
504 |a Chen, F., Zheng, J., Sederberg, T., The μ-basis of a rational ruled surface (2001) Comput. Aided Geom. Design, 18 (1), pp. 61-72 
504 |a Cox, D., Little, J., O'Shea, D., (1998) Using Algebraic Geometry, 185. , Graduate Texts in Mathematics. New York, Springer-Verlag 
504 |a Cox, D., Sederberg, T., Chen, F., The moving line ideal basis of planar rational curves (1998) Comput. Aided Geom. Des., 15, pp. 803-827 
504 |a Zheng, J., Sederberg, T., A direct approach to computing the μ- basis of planar rational curves (2001) J. Symbolic Comput., 31 (5), pp. 619-629 
520 3 |a We prove that, if μ < ⌊n/2⌋, then every rational parametrization of degree n and class μ is a limit of parametrizations of the same degree and class μ + 1. This property was conjectured in Cox, D., Sederberg, T., Chen, F. [Cox, D., Sederberg, T., Chen, F. (1998b)] and its validity allows an explicit description of the variety of parametrizations of degree n and class μ, for all (n, μ).  |l eng 
536 |a Detalles de la financiación: Institut national de recherche en informatique et en automatique, A00E02 
536 |a Detalles de la financiación: I would like to thank David Cox for his careful reading of the manuscript and many helpful suggestions. This research was conducted while I was a postdoctoral fellow at the Institut National de Recherche en Informatique et en Automatique (INRIA) in Sophia-Antipolis, France, partially supported by Action A00E02 of the ECOS-SeTCIP French-Argentina bilateral collaboration. 
593 |a Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Departamento de Matemática, FCEyN, Ciudad Universitaria, Buenos Aires 1428, Argentina 
690 1 0 |a PARAMETRIZATIONS 
690 1 0 |a RATIONAL CURVES 
690 1 0 |a Μ-BASES 
773 0 |d Marcel Dekker Inc., 2004  |g v. 32  |h pp. 159-165  |k n. 1  |p Commun. Algebra  |x 00927872  |w (AR-BaUEN)CENRE-4243  |t Communications in Algebra 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-1542403995&doi=10.1081%2fAGB-120027858&partnerID=40&md5=e1152e32e35c8346f84c5b832a087623  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1081/AGB-120027858  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00927872_v32_n1_p159_DAndrea  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00927872_v32_n1_p159_DAndrea  |y Registro en la Biblioteca Digital 
961 |a paper_00927872_v32_n1_p159_DAndrea  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 65663