On the Structure of μ-Classes
We prove that, if μ < ⌊n/2⌋, then every rational parametrization of degree n and class μ is a limit of parametrizations of the same degree and class μ + 1. This property was conjectured in Cox, D., Sederberg, T., Chen, F. [Cox, D., Sederberg, T., Chen, F. (1998b)] and its validity allows an expli...
Guardado en:
| Autor principal: | |
|---|---|
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Marcel Dekker Inc.
2004
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 03547caa a22004217a 4500 | ||
|---|---|---|---|
| 001 | PAPER-4710 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203417.0 | ||
| 008 | 190411s2004 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-1542403995 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a D'Andrea, C. | |
| 245 | 1 | 3 | |a On the Structure of μ-Classes |
| 260 | |b Marcel Dekker Inc. |c 2004 | ||
| 270 | 1 | 0 | |m D'Andrea, C.; Departamento de Matemática, FCEyN, Ciudad Universitaria, Buenos Aires 1428, Argentina; email: cdandrea@dm.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Chen, F., Sederberg, T., A new implicit representation of a planar rational curve with high order singularity (2002) Comput. Aided Geom. Design, 19, pp. 151-167. , 9.2 | ||
| 504 | |a Chen, F., Wang, W., (2002) The μ-Basis of a Planar Rational Curve- Properties Computation, , Preprint | ||
| 504 | |a Chen, F., Zheng, J., Sederberg, T., The μ-basis of a rational ruled surface (2001) Comput. Aided Geom. Design, 18 (1), pp. 61-72 | ||
| 504 | |a Cox, D., Little, J., O'Shea, D., (1998) Using Algebraic Geometry, 185. , Graduate Texts in Mathematics. New York, Springer-Verlag | ||
| 504 | |a Cox, D., Sederberg, T., Chen, F., The moving line ideal basis of planar rational curves (1998) Comput. Aided Geom. Des., 15, pp. 803-827 | ||
| 504 | |a Zheng, J., Sederberg, T., A direct approach to computing the μ- basis of planar rational curves (2001) J. Symbolic Comput., 31 (5), pp. 619-629 | ||
| 520 | 3 | |a We prove that, if μ < ⌊n/2⌋, then every rational parametrization of degree n and class μ is a limit of parametrizations of the same degree and class μ + 1. This property was conjectured in Cox, D., Sederberg, T., Chen, F. [Cox, D., Sederberg, T., Chen, F. (1998b)] and its validity allows an explicit description of the variety of parametrizations of degree n and class μ, for all (n, μ). |l eng | |
| 536 | |a Detalles de la financiación: Institut national de recherche en informatique et en automatique, A00E02 | ||
| 536 | |a Detalles de la financiación: I would like to thank David Cox for his careful reading of the manuscript and many helpful suggestions. This research was conducted while I was a postdoctoral fellow at the Institut National de Recherche en Informatique et en Automatique (INRIA) in Sophia-Antipolis, France, partially supported by Action A00E02 of the ECOS-SeTCIP French-Argentina bilateral collaboration. | ||
| 593 | |a Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina | ||
| 593 | |a Departamento de Matemática, FCEyN, Ciudad Universitaria, Buenos Aires 1428, Argentina | ||
| 690 | 1 | 0 | |a PARAMETRIZATIONS |
| 690 | 1 | 0 | |a RATIONAL CURVES |
| 690 | 1 | 0 | |a Μ-BASES |
| 773 | 0 | |d Marcel Dekker Inc., 2004 |g v. 32 |h pp. 159-165 |k n. 1 |p Commun. Algebra |x 00927872 |w (AR-BaUEN)CENRE-4243 |t Communications in Algebra | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-1542403995&doi=10.1081%2fAGB-120027858&partnerID=40&md5=e1152e32e35c8346f84c5b832a087623 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1081/AGB-120027858 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00927872_v32_n1_p159_DAndrea |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00927872_v32_n1_p159_DAndrea |y Registro en la Biblioteca Digital |
| 961 | |a paper_00927872_v32_n1_p159_DAndrea |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 65663 | ||