The electrophilic reactions of pentacyanonitrosylferrate(II) with hydrazine and substituted derivatives. Catalytic reduction of nitrite and theoretical prediction of η1-, η2-N2O bound intermediates

The electrophilic reactivity of the pentacyanonitrosylferrate(II) ion, [Fe(CN)5NO]2-, toward hydrazine (Hz) and substituted hydrazines (MeHz, 1, 1-Me2Hz, and 1,2-Me2Hz) has been studied by means of stoichiometric and kinetic experiments (pH 6-10). The reaction of Hz led to N2O and NH3, with similar...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gutiérrez, M.M
Otros Autores: Amorebieta, V.T, Estiú, G.L, Olabe, J.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2002
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13307caa a22017897a 4500
001 PAPER-5224
003 AR-BaUEN
005 20230518203451.0
008 190411s2002 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0037019656 
024 7 |2 cas  |a ferric ion, 20074-52-6; hydrazine, 10217-52-4, 13775-80-9, 18500-32-8, 302-01-2, 7803-57-8; hydroxylamine, 7803-49-8; nitrate, 14797-55-8; nitric oxide, 10102-43-9; nitrite, 14797-65-0; nitroprusside sodium, 14402-89-2, 15078-28-1; nitrous oxide, 10024-97-2; tempol, 2226-96-2 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JACSA 
100 1 |a Gutiérrez, M.M. 
245 1 4 |a The electrophilic reactions of pentacyanonitrosylferrate(II) with hydrazine and substituted derivatives. Catalytic reduction of nitrite and theoretical prediction of η1-, η2-N2O bound intermediates 
260 |c 2002 
270 1 0 |m Amorebieta, V.T.; Department of Chemistry, Facultad de Ciencias Exactas, Universidad Nac. de Mar del Plata, Funes y Roca, Mar del Plata B7602AYL, Argentina; email: amorebie@mdp.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Richter-Addo, G.B., Legzdins, P., (1992) Metal Nitrosyls, , Oxford University Press: New York 
504 |a Westcott, B.L., Enemark, J.H., (1999) Inorganic Electronic Structure and Spectroscopy: Applications and Case Studies, 2, pp. 403-450. , Solomon, E.I., Lever, A.B.P., Eds.; Wiley: New York 
504 |a Ford, P.C., Lorkovic, I.M., (2002) Chem. Rev., 102, pp. 993-1018 
504 |a Swinehart, J.H., (1967) Coord. Chem. Rev., 2, pp. 385-402 
504 |a Boedeker, C., (1861) Liebigs Ann. Chem., 117, p. 193 
504 |a McCleverty, J.A., (1979) Chem. Rev., 79, pp. 53-76 
504 |a Bottomley, F., (1985) Reactions of Coordinated Ligands, 2, pp. 115-222. , Braterman, P.S., Ed.; Plenum: New York 
504 |a Enemark, J.H., Feltham, R.D., (1974) Coord. Chem. Rev., 13, pp. 339-406 
504 |a Bottomley, F., (1978) Acc. Chem. Res., 11, pp. 158-163 
504 |a Swinehart, J.H., Rock, P.A., (1966) Inorg. Chem., 5, pp. 573-576 
504 |a Masek, J., Wendt, H., (1969) Inorg. Chim. Acta, 3, pp. 455-458 
504 |a Chevalier, A.A., Gentil, L.A., Olabe, J.A., (1991) J. Chem. Soc., Dalton Trans. (1972-1999), pp. 1959-1963 
504 |a Baraldo, L.M., Bessega, M.S., Rigotti, G.E., Olabe, J.A., (1994) Inorg. Chem., 33, pp. 5890-5896 
504 |a Trogler, W.C., (1999) Coord. Chem. Rev., 187, pp. 303-327 
504 |a Averill, B.A., (1996) Chem. Rev., 96, pp. 2951-2964 
504 |a Hollocher, T.C., (1996) Nitric Oxide Principles and Actions, , Lancaster, J., Jr., Ed.: Academic Press: New York 
504 |a Clarke, M.J., Gaul, J.B., (1993) Struct. Bonding (Berlin), 81, pp. 147-181 
504 |a (2000) Nitric Oxide Biology, and Pathobiology, , Ignarro, L. J., Ed.; Academic Press New York 
504 |a Chevalier, A.A., Gentil, L.A., Amorebieta, V.T., Gutiérrez, M.M., Olabe, J.A., (2000) J. Am. Chem. Soc., 122, pp. 11238-11239 
504 |a Bottomley, F., Crawford, J.R., (1972) J. Am. Chem. Soc., 94, pp. 9092-9095 
504 |a Douglas, P.G., Feltham, R.D., Metzger, H.G., (1971) J. Am. Chem. Soc., 93, pp. 84-90 
504 |a Bottomley, F., Kiremire, E.M.R., (1977) J. Chem. Soc. Dalton Trans. (1972-1999), pp. 1125-1131 
504 |a Stanbury, D.M., (1998) Prog. Inorg. Chem., 47, pp. 511-561 
504 |a Armor, J., (1973) Inorg. Chem., 12, pp. 1959-1961 
504 |a Armor, J.N., Hoffman, M.Z., (1975) Inorg. Chem., 14, pp. 444-446 
504 |a Barley, M.H., Takeuchi, K.J., Meyer, T.J., (1986) J. Am. Chem. Soc., 108, pp. 5876-5885 
504 |a Murphy, W.R., Takeuchi, K., Barley, M.H., Meyer, T., (1986) J. Inorg. Chem., 25, pp. 1041-1053 
504 |a Kenney, D.J., Flynn, T.P., Gallini, J.B., (1961) J. Inorg. Nucl. Chem., 20, p. 75 
504 |a Van Voorst, J.D.W., Hemmerich, P., (1966) J. Chem. Phys., 45, pp. 3914-3918 
504 |a Wanner, M., Scheiring, T., Kaim, W., Slep, L.D., Baraldo, L.M., Olabe, J.A., Zalis, S., Baerends, E., (2001) J. Inorg. Chem., 40, pp. 5704-5707 
504 |a Blatt, A.H., (1943) Organic Synthesis, 2. , Wiley: New York 
504 |a Toma, H.E., (1975) Inorg. Chim. Acta, 15, pp. 205-211 
504 |a Katz, N.E., Olabe, J.A., Aymonino, P.J., (1977) J. Inorg. Nucl. Chem., 39, pp. 908-910 
504 |a Macartney, D.H., (1988) Rev. Inorg. Chem., 9, pp. 101-151 
504 |a Toma, H.E., Malin, J.M., (1973) Inorg. Chem., 12, pp. 1039-1044 
504 |a Toma, H.E., Malin, J.M., (1973) Inorg. Chem., 12, pp. 2080-2083 
504 |a Toma, H.E., Malin, J.M., (1974) Inorg. Chem., 13, pp. 1772-1774 
504 |a Siggia, S., Hanna, J.G., (1979) Quantitative Organic Analysis via Functional Groups, 4th ed., p. 668. , Wiley: New York 
504 |a Siggia, S., Hanna, J.G., (1979) Quantitative Organic Analysis via Functional Groups, 4th ed., p. 581. , Wiley: New York 
504 |a Koroleff, F., (1976) Methods of Seawater Analysis, pp. 126-213. , Grasshoft, K., Ed.; Verlag Chemie: New York 
504 |a West, P.W., Sen, B., (1956) J. Anal. Chem., 153, pp. 12-18 
504 |a Cheney, R.P., Simic, M.G., Hoffman, M.Z., Taub, I.A., Asmus, K.D., (1977) Inorg. Chem., 16, pp. 2187-2192 
504 |a Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Pople, J.A., (1998) Gaussian 98, , Gaussian, Inc.: Pittsburgh, PA 
504 |a Becke, A.D., (1993) J. Chem. Phys., 98, pp. 5648-5652 
504 |a Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev., B37, pp. 785-789 
504 |a Casida, M.E., Jamorski, C., Casida, K.C., Salahub, D.R., (1998) J. Chem. Phys., 108, pp. 4439-4449 
504 |a Stratmann, R.E., Scuseria, G.E., Frisch, M.J., (1998) J. Chem. Phys., 109, pp. 8218-8224 
504 |a note; note; Condon, F.E., (1972) J. Org. Chem., 37, pp. 3608-3615 
504 |a Bagno, A., Menna, E., Mezzina, E., Scorrano, G., Spinelli, D., (1998) J. Phys. Chem. A, 102, pp. 2888-2892 
504 |a Bottomley, F., Brooks, V.F., Paez, D.E., White, P.S., Mukaida, M., (1983) J. Chem. Soc., Dalton Trans. (1972-1999), pp. 2465-2472 
504 |a Johnson, M.D., Wilkins, R.G., (1984) Inorg. Chem., 23, pp. 231-235 
504 |a Schwane, J.D., Ashby, M.T., (2002) J. Am. Chem. Soc., 124, pp. 6821-6823 
504 |a Perrott, J.R., Stedman, G., Uysal, N., (1976) J. Chem. Soc., Dalton Trans. (1972-1999), pp. 2058-2064 
504 |a Perrott, J.R., Stedman, G., Uysal, N., (1977) J. Chem. Soc., Perkin Trans. 2, pp. 274-278 
504 |a Wolfe, S.K., Andrade, C., Swinehart, J.H., (1974) Inorg. Chem., 13, pp. 2567-2572 
504 |a note; Dozsa, L., Kormos, V., Beck, M.T., (1984) Inorg. Chim. Acta, 82, pp. 69-74 
504 |a Kathó, A., Beck, M.T., (1988) Inorg. Chim. Acta, 174, pp. 99-102 
504 |a Wilson, R.D., Ibers, J.A., (1979) Inorg. Chem., 18, pp. 336-343 
504 |a Southern, J.S., Hillhouse, G.L., (1997) J. Am. Chem. Soc., 119, pp. 12406-12407 
504 |a Lin, R., Farmer, P.J., (2000) J. Am. Chem. Soc., 122, pp. 2393-2394 
504 |a Sellmann, D., Gottschalk-Gaudig, T., Hausinger, D., Heinemann, F.W., Hess, B.A., (2001) Chem.-Eur. J., 7, pp. 2099-2103 
504 |a González Lebrero, M.C., Scherlis, D.A., Estiú, G.L., Olabe, J.A., Estrin, D.A., (2001) Inorg. Chem., 40, pp. 4127-4133 
504 |a note; Masek, J., Maslova, E., (1974) Collect. Czech. Chem. Commun., 39, pp. 2141-2160 
504 |a Ruff, F., Csizmadia, I.G., (1994) Organic Reactions Equilibria, Kinetics and Mechanism, , Elsevier: New York 
504 |a Silvestrini, M.C., Tordi, M.G., Musci, G., Brunori, M., (1990) J. Biol. Chem., 265, pp. 11783-11787 
504 |a Kim, C.H., Hollocher, T.C., (1984) J. Biol. Chem., 259, pp. 2092-2099 
504 |a Tanimoto, T., Hatano, K.H., Kim, D.H., Uchiyama, H., Shoun, H., (1992) FEMS Microbiol. Lett., 93, pp. 177-180 
504 |a Heaton, B.T., Jacob, C., Page, P., (1996) Coord. Chem. Rev., 154, pp. 193-229 
504 |a Bottomley, F., (1970) Quart. Rev., pp. 617-638 
504 |a Nakamoto, K., (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed., , Wiley: New York 
504 |a Enemark, J.H., Feltham, R.D., (1972) Proc. Natl. Acad. Sci. U.S.A., 69, pp. 3534-3536 
504 |a Song, J., Hall, M.B., (1993) J. Am. Chem. Soc., 115, pp. 327-336 
504 |a Bottomley, F., (1976) Inorg. Synth., 16, pp. 75-85 
504 |a Bottomley, F., Brooks, W.V.F., (1977) Inorg. Chem., 16, pp. 501-502 
504 |a Tuan, D.F., Hoffmann, R., (1985) Inorg. Chem., 24, pp. 871-876 
504 |a Coppens, P., Novozhilova, I., Kovalevsky, A., (2002) Chem. Rev., 102, pp. 861-884 
504 |a Carducci, M.D., Pressprich, M.R., Coppens, P., (1997) J. Am. Chem. Soc., 119, pp. 2669-2678 
504 |a Fomitchev, D.V., Bagley, K.A., Coppens, P., (2000) J. Am. Chem. Soc., 122, pp. 532-533 
520 3 |a The electrophilic reactivity of the pentacyanonitrosylferrate(II) ion, [Fe(CN)5NO]2-, toward hydrazine (Hz) and substituted hydrazines (MeHz, 1, 1-Me2Hz, and 1,2-Me2Hz) has been studied by means of stoichiometric and kinetic experiments (pH 6-10). The reaction of Hz led to N2O and NH3, with similar paths for MeHz and 1,1-Me2Hz, which form the corresponding amines. A parallel path has been found for MeHz, leading to N2O, N2, and MeOH. The reaction of 1,2-Me2Hz follows a different route, characterized by azomethane formation (MeNNMe), full reduction of nitrosyl to NH3, and intermediate detection of [Fe(CN)5NO]3-. In the above reactions, [Fe(CN)5H2O]3- was always a product, allowing the system to proceed catalytically for nitrite reduction, an issue relevant in relation to the behavior of the nitrite and nitric oxide reductase enzymes. The mechanism comprises initial reversible adduct formation through the binding of the nucleophile to the N-atom of nitrosyl. The adducts decompose through OH- attack giving the final products, without intermediate detection. Rate constants for the adduct-formation steps (k = 0.43 M-1 s-1, 25 °C for Hz) decrease with methylation by about an order of magnitude. Among the different systems studied, one-, two-, and multielectron reductions of bound NO+ are analyzed comparatively, with consideration of the role of NO, HNO (nitroxyl), and hydroxylamine as bound intermediates. A DFT study (B3LYP) of the reaction profile allows one to characterize intermediates in the potential hypersurface. These are the initial adducts, as well as their decomposition products, the η1- and η2-linkage isomers of N2O.  |l eng 
593 |a The Department of Chemistry, Facultad de Ciencias Exactas, Universidad Nacional de Mar del Plata, Funes y Roca, Mar del Plata B7602AYL, Argentina 
593 |a Cequinor, Department of Chemistry, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina 
593 |a Department of Inorganic, Analytical, and Physical Chemistry, Inquimae, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina 
690 1 0 |a ELECTROPHILIC REACTIVITY 
690 1 0 |a DECOMPOSITION 
690 1 0 |a DERIVATIVES 
690 1 0 |a ENZYMES 
690 1 0 |a HYDRAZINE 
690 1 0 |a RATE CONSTANTS 
690 1 0 |a CHEMICAL REACTIONS 
690 1 0 |a AMINE 
690 1 0 |a AMMONIUM DERIVATIVE 
690 1 0 |a FERRIC ION 
690 1 0 |a HYDRAZINE 
690 1 0 |a HYDRAZINE DERIVATIVE 
690 1 0 |a HYDROXYLAMINE 
690 1 0 |a NITRATE 
690 1 0 |a NITRIC OXIDE 
690 1 0 |a NITRIC OXIDE REDUCTASE 
690 1 0 |a NITRITE 
690 1 0 |a NITROPRUSSIDE SODIUM 
690 1 0 |a NITROUS OXIDE 
690 1 0 |a PENTACYANONITROSYLFERRATE(II) 
690 1 0 |a TEMPOL 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ARTICLE 
690 1 0 |a BINDING KINETICS 
690 1 0 |a CATALYSIS 
690 1 0 |a CHEMICAL BINDING 
690 1 0 |a CHEMICAL REACTION 
690 1 0 |a CHEMICAL REACTION KINETICS 
690 1 0 |a COMPUTER PREDICTION 
690 1 0 |a DECOMPOSITION 
690 1 0 |a ELECTRIC CONDUCTIVITY 
690 1 0 |a INTERMETHOD COMPARISON 
690 1 0 |a ISOMERISM 
690 1 0 |a METHYLATION 
690 1 0 |a PRODUCT RECOVERY 
690 1 0 |a REACTION ANALYSIS 
690 1 0 |a REACTION OPTIMIZATION 
690 1 0 |a REDUCTION 
690 1 0 |a STOICHIOMETRY 
690 1 0 |a THEORY 
700 1 |a Amorebieta, V.T. 
700 1 |a Estiú, G.L. 
700 1 |a Olabe, J.A. 
773 0 |d 2002  |g v. 124  |h pp. 10307-10319  |k n. 35  |p J. Am. Chem. Soc.  |x 00027863  |w (AR-BaUEN)CENRE-19  |t Journal of the American Chemical Society 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037019656&doi=10.1021%2fja025995v&partnerID=40&md5=9831a2969987f0492d916965db957f9a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/ja025995v  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00027863_v124_n35_p10307_Gutierrez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v124_n35_p10307_Gutierrez  |y Registro en la Biblioteca Digital 
961 |a paper_00027863_v124_n35_p10307_Gutierrez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 66177