Point mutations in the barley HvHAK1 potassium transporter lead to improved K+-nutrition and enhanced resistance to salt stress
Members of group I KT-HAK-KUP transporters play an important role in K+ acquisition by plant roots, a process that is strongly affected by salt stress. A PCR-based random mutagenesis approach on HvHAK1 allowed identification of V366I and R591C substitutions, which confer enhanced K+-capture, and imp...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2008
|
| Materias: | |
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 10960caa a22011537a 4500 | ||
|---|---|---|---|
| 001 | PAPER-5593 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203514.0 | ||
| 008 | 190411s2008 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-55749115607 | |
| 024 | 7 | |2 cas |a ammonium chloride, 12125-02-9; lithium chloride, 7447-41-8; sodium chloride, 7647-14-5; Arginine, 74-79-3; Cation Transport Proteins; Cysteine, 52-90-4; HAK2 protein, Hordeum vulgare; Isoleucine, 73-32-5; Plant Proteins; Potassium, 7440-09-7; Saccharomyces cerevisiae Proteins; Sodium Chloride, 7647-14-5; Sodium, 7440-23-5; TRK1 protein, S cerevisiae, 136956-54-2; Valine, 7004-03-7 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a FEBLA | ||
| 100 | 1 | |a Mangano, S. | |
| 245 | 1 | 0 | |a Point mutations in the barley HvHAK1 potassium transporter lead to improved K+-nutrition and enhanced resistance to salt stress |
| 260 | |c 2008 | ||
| 270 | 1 | 0 | |m Santa-María, G.E.; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto Tecnológico de Chascomús, Camino Circunvalación km 6, Chascomus, Provincia de Buenos Aires 7130, Argentina; email: gsantama@iib.unsam.edu.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Omielan, J.A., Epstein, E., Dvorák, J., Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt-tolerant Lophopyrum elongatum (1991) Genome, 34, pp. 961-974 | ||
| 504 | |a Ren, Z.-H., Gao, J.-P., Li, L.-G., Cai, X.-L., Huang, W., Chao, D.-Y., Zhu, M.-Z., Lin, H.-X., A rice quantitative trait locus for salt tolerance encodes a sodium transporter (2005) Nat. Genet., 37, pp. 1141-1146 | ||
| 504 | |a Byrt, C.S., Platten, J.D., Spielmeyer, W., James, R.A., Lagudah, E.S., Dennis, E.S., Tester, M., Munns, R., HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1 (2007) Plant Physiol., 143, pp. 1918-1928 | ||
| 504 | |a Mäser, P., Eckelman, B., Vaidyanathan, R., Horie, T., Fairbairn, D.J., Kubo, M., Yamagami, M., Schroeder, J.I., Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1 (2002) FEBS Lett., 531, pp. 157-161 | ||
| 504 | |a Berthomieu, P., Conéjéro, G., Nublat, A., Brackenbury, W.J., Lambert, C., Savio, C., Uozumi, N., Casse, F., Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance (2003) EMBO J., 22, pp. 2004-2014 | ||
| 504 | |a Sunarpi, H., Motoda, T., Kubo, J., Yang, M., Yoda, H., Horie, K., Chan, R., Uozumi, N., Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells (2005) Plant J., 44, pp. 928-938 | ||
| 504 | |a Zhu, J.-K., Liu, L., Xiong, L., Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition (1998) Plant Cell, 10, pp. 1181-1192 | ||
| 504 | |a Gierth, M., Mäser, P., Schroeder, J.I., The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 channel contribution to K+ uptake kinetics in Arabidopsis roots (2005) Plant Physiol., 137, pp. 1105-1114 | ||
| 504 | |a Qi, Z., Hampton, C.R., Shin, R., Barkla, B.J., White, P.J., Schachtman, D.P., The high-affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis (2008) J. Exp. Bot., 59, pp. 595-607 | ||
| 504 | |a Santa-María, G.E., Rubio, F., Dubcovsky, J., Rodríguez-Navarro, A., The HAK1 gene of barley belongs to a large gene family and encodes a high-affinity potassium transporter (1997) Plant Cell, 9, pp. 2281-2289 | ||
| 504 | |a Rubio, F., Santa-María, G.E., Rodríguez-Navarro, A., Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells (2000) Plant Physiol., 109, pp. 34-44 | ||
| 504 | |a Martínez-Cordero, M.A., Martínez, V., Rubio, F., Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper (2004) Plant Mol. Biol., 56, pp. 413-421 | ||
| 504 | |a Fulgenzi, F.R., Peralta, M.L., Mangano, S., Danna, C.H., Vallejo, A.J., Puigdomenech, P., Santa-María, G.E., The ionic environment controls the contribution of the HvHAK1 transporter to potassium nutrition (2008) Plant Physiol., 147, pp. 252-262 | ||
| 504 | |a Senn, M.E., Rubio, F., Bañuelos, M.A., Rodríguez-Navarro, A., Comparative functional features of plant potassium HvHAK1 and HvHAK2 transporters (2001) J. Biol. Chem., 276, pp. 44563-44569 | ||
| 504 | |a Rubio, F., Gassmann, W., Schroeder, J.I., Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance (1995) Science, 270, pp. 1660-1663 | ||
| 504 | |a Silberstein, S., Collins, P.G., Kelleher, D.J., Gilmore, R., The essential OST2 gene encodes the 16-kDa subunit of the yeast oligosaccharyltransferase, a highly conserved protein expressed in diverse eukaryotic organisms (1995) J. Cell Biol., 131, pp. 371-383 | ||
| 504 | |a Madrid, R., Gomez, M.J., Ramos, J., Rodríguez-Navarro, A., Ectopic potassium uptake in trk1trk2 mutants of Saccharomyces cerevisiae correlates with a highly hyperpolarized membrane potential (1998) J. Biol. Chem., 273, pp. 14838-14844 | ||
| 504 | |a Quintero, F., Blatt, M., A new family of K+ transporters from Arabidopsis that are conserved across phyla (1997) FEBS Lett., 415, pp. 206-211 | ||
| 504 | |a Fu, H.-H., Luan, S., AtKUP1: a dual-affinity K+ transporter from Arabidopsis (1998) Plant Cell, 10, pp. 63-74 | ||
| 504 | |a Kim, E.J., Kwak, J.M., Uozumi, N., Schroeder, J.I., AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity (1998) Plant Cell, 10, pp. 51-62 | ||
| 504 | |a Scheleyer, M., Bakker, E.P., Nucleotide sequence and 3′-end deletion studies indicate that the K+-uptake protein Kup from Escherichia coli is composed of a hydrophobic core linked to a large and partially essential hydrophilic C-terminus (1993) J. Bacteriol., 175, pp. 6925-6931 | ||
| 504 | |a Yenush, L., Mulet, J.M., Ariño, J., Serrano, R., The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression (2002) EMBO J., 21, pp. 920-929 | ||
| 504 | |a Mulet, J.M., Leube, M.P., Kron, S.J., Rios, G., Fink, G.R., Serrano, R., A novel mechanism of ion homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protein kinases modulate the Trk1-Trk2 potassium transporter (1999) Mol. Cell Biol., 19, pp. 3328-3337 | ||
| 504 | |a Ruíz, A., Ariño, J., Function and regulation of the Saccharomyces cerevisie ENA sodium ATPase system (2007) Euk. Cell, 6, pp. 2175-2183 | ||
| 504 | |a Hess, D.C., Lu, W., Botstein, D., Ammonium toxicity and potassium limitation in yeast (2006) PLOS Biol., 4, pp. 2012-2023 | ||
| 504 | |a Obata, T., Kitamoto, H.K., Nakamura, A., Fukuda, A., Tanaka, Y., Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells (2007) Plant Physiol., 144, pp. 1978-1985 | ||
| 504 | |a Rodríguez-Navarro, A., Potassium transport in fungi and plants (2000) Biochim. Biophys. Acta, 1469, pp. 1-30 | ||
| 520 | 3 | |a Members of group I KT-HAK-KUP transporters play an important role in K+ acquisition by plant roots, a process that is strongly affected by salt stress. A PCR-based random mutagenesis approach on HvHAK1 allowed identification of V366I and R591C substitutions, which confer enhanced K+-capture, and improved NaCl, LiCl and NH4Cl tolerance, to yeast cells. Improved K+-capture was linked to an enhanced Vmax. Results reveal an intrinsic protective effect of K+, and assign an important role to the 8th transmembrane domain, as well as the C-terminus, in determining the maximum capacity for the transport of K+ in KT-HAK-KUP transporters. © 2008 Federation of European Biochemical Societies. |l eng | |
| 536 | |a Detalles de la financiación: 20138/04 | ||
| 536 | |a Detalles de la financiación: Thanks are given to the IIB sequencing service for DNA sequencing, to Augusto J. Vallejo for valuable help in chromatogram reading and to him and María Luisa Peralta for subcloning the V366I and R591C coding HvHAK1 versions into the pYPGE15 plasmid. The authors express their thanks to Rosario Haro for the gift of the B31 and W Δ 3 strains and to Dr. H. Zagarese for useful corrections to the manuscript. This research was supported by the ANPCYT-PICT 20138/04 grant, and by a CONICET-PIP grant to G.E. Santa-María. Appendix A | ||
| 593 | |a Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto Tecnológico de Chascomús, Camino Circunvalación km 6, Chascomus, Provincia de Buenos Aires 7130, Argentina | ||
| 593 | |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Intendente Güiraldes 2160, Ciudad Autonoma de Buenos Aires, 1428, Argentina | ||
| 690 | 1 | 0 | |a HAK |
| 690 | 1 | 0 | |a KUP |
| 690 | 1 | 0 | |a POTASSIUM |
| 690 | 1 | 0 | |a SODIUM |
| 690 | 1 | 0 | |a TRANSPORTER |
| 690 | 1 | 0 | |a AMMONIUM CHLORIDE |
| 690 | 1 | 0 | |a LITHIUM CHLORIDE |
| 690 | 1 | 0 | |a SODIUM CHLORIDE |
| 690 | 1 | 0 | |a AMINO ACID SUBSTITUTION |
| 690 | 1 | 0 | |a ARTICLE |
| 690 | 1 | 0 | |a BARLEY |
| 690 | 1 | 0 | |a NONHUMAN |
| 690 | 1 | 0 | |a NUTRITION |
| 690 | 1 | 0 | |a POINT MUTATION |
| 690 | 1 | 0 | |a POLYMERASE CHAIN REACTION |
| 690 | 1 | 0 | |a POTASSIUM TRANSPORT |
| 690 | 1 | 0 | |a PRIORITY JOURNAL |
| 690 | 1 | 0 | |a PROTEIN DOMAIN |
| 690 | 1 | 0 | |a SALT STRESS |
| 690 | 1 | 0 | |a YEAST CELL |
| 690 | 1 | 0 | |a AMINO ACID SUBSTITUTION |
| 690 | 1 | 0 | |a ARGININE |
| 690 | 1 | 0 | |a CATION TRANSPORT PROTEINS |
| 690 | 1 | 0 | |a CYSTEINE |
| 690 | 1 | 0 | |a ION TRANSPORT |
| 690 | 1 | 0 | |a ISOLEUCINE |
| 690 | 1 | 0 | |a OSMOTIC PRESSURE |
| 690 | 1 | 0 | |a PLANT PROTEINS |
| 690 | 1 | 0 | |a POINT MUTATION |
| 690 | 1 | 0 | |a POTASSIUM |
| 690 | 1 | 0 | |a SACCHAROMYCES CEREVISIAE |
| 690 | 1 | 0 | |a SACCHAROMYCES CEREVISIAE PROTEINS |
| 690 | 1 | 0 | |a SALINITY |
| 690 | 1 | 0 | |a SODIUM |
| 690 | 1 | 0 | |a SODIUM CHLORIDE |
| 690 | 1 | 0 | |a VALINE |
| 690 | 1 | 0 | |a HORDEUM |
| 650 | 1 | 7 | |2 spines |a MUTAGENESIS |
| 700 | 1 | |a Silberstein, S. | |
| 700 | 1 | |a Santa-María, G.E. | |
| 773 | 0 | |d 2008 |g v. 582 |h pp. 3922-3928 |k n. 28 |p FEBS Lett. |x 00145793 |w (AR-BaUEN)CENRE-552 |t FEBS Letters | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-55749115607&doi=10.1016%2fj.febslet.2008.10.036&partnerID=40&md5=7e6e10b3b572a568c827e82532a1ea98 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.febslet.2008.10.036 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00145793_v582_n28_p3922_Mangano |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00145793_v582_n28_p3922_Mangano |y Registro en la Biblioteca Digital |
| 961 | |a paper_00145793_v582_n28_p3922_Mangano |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a VARI | ||
| 999 | |c 66546 | ||