Point mutations in the barley HvHAK1 potassium transporter lead to improved K+-nutrition and enhanced resistance to salt stress

Members of group I KT-HAK-KUP transporters play an important role in K+ acquisition by plant roots, a process that is strongly affected by salt stress. A PCR-based random mutagenesis approach on HvHAK1 allowed identification of V366I and R591C substitutions, which confer enhanced K+-capture, and imp...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Mangano, S.
Otros Autores: Silberstein, S., Santa-María, G.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2008
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10960caa a22011537a 4500
001 PAPER-5593
003 AR-BaUEN
005 20230518203514.0
008 190411s2008 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-55749115607 
024 7 |2 cas  |a ammonium chloride, 12125-02-9; lithium chloride, 7447-41-8; sodium chloride, 7647-14-5; Arginine, 74-79-3; Cation Transport Proteins; Cysteine, 52-90-4; HAK2 protein, Hordeum vulgare; Isoleucine, 73-32-5; Plant Proteins; Potassium, 7440-09-7; Saccharomyces cerevisiae Proteins; Sodium Chloride, 7647-14-5; Sodium, 7440-23-5; TRK1 protein, S cerevisiae, 136956-54-2; Valine, 7004-03-7 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a FEBLA 
100 1 |a Mangano, S. 
245 1 0 |a Point mutations in the barley HvHAK1 potassium transporter lead to improved K+-nutrition and enhanced resistance to salt stress 
260 |c 2008 
270 1 0 |m Santa-María, G.E.; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto Tecnológico de Chascomús, Camino Circunvalación km 6, Chascomus, Provincia de Buenos Aires 7130, Argentina; email: gsantama@iib.unsam.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Omielan, J.A., Epstein, E., Dvorák, J., Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt-tolerant Lophopyrum elongatum (1991) Genome, 34, pp. 961-974 
504 |a Ren, Z.-H., Gao, J.-P., Li, L.-G., Cai, X.-L., Huang, W., Chao, D.-Y., Zhu, M.-Z., Lin, H.-X., A rice quantitative trait locus for salt tolerance encodes a sodium transporter (2005) Nat. Genet., 37, pp. 1141-1146 
504 |a Byrt, C.S., Platten, J.D., Spielmeyer, W., James, R.A., Lagudah, E.S., Dennis, E.S., Tester, M., Munns, R., HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1 (2007) Plant Physiol., 143, pp. 1918-1928 
504 |a Mäser, P., Eckelman, B., Vaidyanathan, R., Horie, T., Fairbairn, D.J., Kubo, M., Yamagami, M., Schroeder, J.I., Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1 (2002) FEBS Lett., 531, pp. 157-161 
504 |a Berthomieu, P., Conéjéro, G., Nublat, A., Brackenbury, W.J., Lambert, C., Savio, C., Uozumi, N., Casse, F., Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance (2003) EMBO J., 22, pp. 2004-2014 
504 |a Sunarpi, H., Motoda, T., Kubo, J., Yang, M., Yoda, H., Horie, K., Chan, R., Uozumi, N., Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells (2005) Plant J., 44, pp. 928-938 
504 |a Zhu, J.-K., Liu, L., Xiong, L., Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition (1998) Plant Cell, 10, pp. 1181-1192 
504 |a Gierth, M., Mäser, P., Schroeder, J.I., The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 channel contribution to K+ uptake kinetics in Arabidopsis roots (2005) Plant Physiol., 137, pp. 1105-1114 
504 |a Qi, Z., Hampton, C.R., Shin, R., Barkla, B.J., White, P.J., Schachtman, D.P., The high-affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis (2008) J. Exp. Bot., 59, pp. 595-607 
504 |a Santa-María, G.E., Rubio, F., Dubcovsky, J., Rodríguez-Navarro, A., The HAK1 gene of barley belongs to a large gene family and encodes a high-affinity potassium transporter (1997) Plant Cell, 9, pp. 2281-2289 
504 |a Rubio, F., Santa-María, G.E., Rodríguez-Navarro, A., Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells (2000) Plant Physiol., 109, pp. 34-44 
504 |a Martínez-Cordero, M.A., Martínez, V., Rubio, F., Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper (2004) Plant Mol. Biol., 56, pp. 413-421 
504 |a Fulgenzi, F.R., Peralta, M.L., Mangano, S., Danna, C.H., Vallejo, A.J., Puigdomenech, P., Santa-María, G.E., The ionic environment controls the contribution of the HvHAK1 transporter to potassium nutrition (2008) Plant Physiol., 147, pp. 252-262 
504 |a Senn, M.E., Rubio, F., Bañuelos, M.A., Rodríguez-Navarro, A., Comparative functional features of plant potassium HvHAK1 and HvHAK2 transporters (2001) J. Biol. Chem., 276, pp. 44563-44569 
504 |a Rubio, F., Gassmann, W., Schroeder, J.I., Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance (1995) Science, 270, pp. 1660-1663 
504 |a Silberstein, S., Collins, P.G., Kelleher, D.J., Gilmore, R., The essential OST2 gene encodes the 16-kDa subunit of the yeast oligosaccharyltransferase, a highly conserved protein expressed in diverse eukaryotic organisms (1995) J. Cell Biol., 131, pp. 371-383 
504 |a Madrid, R., Gomez, M.J., Ramos, J., Rodríguez-Navarro, A., Ectopic potassium uptake in trk1trk2 mutants of Saccharomyces cerevisiae correlates with a highly hyperpolarized membrane potential (1998) J. Biol. Chem., 273, pp. 14838-14844 
504 |a Quintero, F., Blatt, M., A new family of K+ transporters from Arabidopsis that are conserved across phyla (1997) FEBS Lett., 415, pp. 206-211 
504 |a Fu, H.-H., Luan, S., AtKUP1: a dual-affinity K+ transporter from Arabidopsis (1998) Plant Cell, 10, pp. 63-74 
504 |a Kim, E.J., Kwak, J.M., Uozumi, N., Schroeder, J.I., AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity (1998) Plant Cell, 10, pp. 51-62 
504 |a Scheleyer, M., Bakker, E.P., Nucleotide sequence and 3′-end deletion studies indicate that the K+-uptake protein Kup from Escherichia coli is composed of a hydrophobic core linked to a large and partially essential hydrophilic C-terminus (1993) J. Bacteriol., 175, pp. 6925-6931 
504 |a Yenush, L., Mulet, J.M., Ariño, J., Serrano, R., The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression (2002) EMBO J., 21, pp. 920-929 
504 |a Mulet, J.M., Leube, M.P., Kron, S.J., Rios, G., Fink, G.R., Serrano, R., A novel mechanism of ion homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protein kinases modulate the Trk1-Trk2 potassium transporter (1999) Mol. Cell Biol., 19, pp. 3328-3337 
504 |a Ruíz, A., Ariño, J., Function and regulation of the Saccharomyces cerevisie ENA sodium ATPase system (2007) Euk. Cell, 6, pp. 2175-2183 
504 |a Hess, D.C., Lu, W., Botstein, D., Ammonium toxicity and potassium limitation in yeast (2006) PLOS Biol., 4, pp. 2012-2023 
504 |a Obata, T., Kitamoto, H.K., Nakamura, A., Fukuda, A., Tanaka, Y., Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells (2007) Plant Physiol., 144, pp. 1978-1985 
504 |a Rodríguez-Navarro, A., Potassium transport in fungi and plants (2000) Biochim. Biophys. Acta, 1469, pp. 1-30 
520 3 |a Members of group I KT-HAK-KUP transporters play an important role in K+ acquisition by plant roots, a process that is strongly affected by salt stress. A PCR-based random mutagenesis approach on HvHAK1 allowed identification of V366I and R591C substitutions, which confer enhanced K+-capture, and improved NaCl, LiCl and NH4Cl tolerance, to yeast cells. Improved K+-capture was linked to an enhanced Vmax. Results reveal an intrinsic protective effect of K+, and assign an important role to the 8th transmembrane domain, as well as the C-terminus, in determining the maximum capacity for the transport of K+ in KT-HAK-KUP transporters. © 2008 Federation of European Biochemical Societies.  |l eng 
536 |a Detalles de la financiación: 20138/04 
536 |a Detalles de la financiación: Thanks are given to the IIB sequencing service for DNA sequencing, to Augusto J. Vallejo for valuable help in chromatogram reading and to him and María Luisa Peralta for subcloning the V366I and R591C coding HvHAK1 versions into the pYPGE15 plasmid. The authors express their thanks to Rosario Haro for the gift of the B31 and W Δ 3 strains and to Dr. H. Zagarese for useful corrections to the manuscript. This research was supported by the ANPCYT-PICT 20138/04 grant, and by a CONICET-PIP grant to G.E. Santa-María. Appendix A 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto Tecnológico de Chascomús, Camino Circunvalación km 6, Chascomus, Provincia de Buenos Aires 7130, Argentina 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Intendente Güiraldes 2160, Ciudad Autonoma de Buenos Aires, 1428, Argentina 
690 1 0 |a HAK 
690 1 0 |a KUP 
690 1 0 |a POTASSIUM 
690 1 0 |a SODIUM 
690 1 0 |a TRANSPORTER 
690 1 0 |a AMMONIUM CHLORIDE 
690 1 0 |a LITHIUM CHLORIDE 
690 1 0 |a SODIUM CHLORIDE 
690 1 0 |a AMINO ACID SUBSTITUTION 
690 1 0 |a ARTICLE 
690 1 0 |a BARLEY 
690 1 0 |a NONHUMAN 
690 1 0 |a NUTRITION 
690 1 0 |a POINT MUTATION 
690 1 0 |a POLYMERASE CHAIN REACTION 
690 1 0 |a POTASSIUM TRANSPORT 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN DOMAIN 
690 1 0 |a SALT STRESS 
690 1 0 |a YEAST CELL 
690 1 0 |a AMINO ACID SUBSTITUTION 
690 1 0 |a ARGININE 
690 1 0 |a CATION TRANSPORT PROTEINS 
690 1 0 |a CYSTEINE 
690 1 0 |a ION TRANSPORT 
690 1 0 |a ISOLEUCINE 
690 1 0 |a OSMOTIC PRESSURE 
690 1 0 |a PLANT PROTEINS 
690 1 0 |a POINT MUTATION 
690 1 0 |a POTASSIUM 
690 1 0 |a SACCHAROMYCES CEREVISIAE 
690 1 0 |a SACCHAROMYCES CEREVISIAE PROTEINS 
690 1 0 |a SALINITY 
690 1 0 |a SODIUM 
690 1 0 |a SODIUM CHLORIDE 
690 1 0 |a VALINE 
690 1 0 |a HORDEUM 
650 1 7 |2 spines  |a MUTAGENESIS 
700 1 |a Silberstein, S. 
700 1 |a Santa-María, G.E. 
773 0 |d 2008  |g v. 582  |h pp. 3922-3928  |k n. 28  |p FEBS Lett.  |x 00145793  |w (AR-BaUEN)CENRE-552  |t FEBS Letters 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-55749115607&doi=10.1016%2fj.febslet.2008.10.036&partnerID=40&md5=7e6e10b3b572a568c827e82532a1ea98  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.febslet.2008.10.036  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00145793_v582_n28_p3922_Mangano  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00145793_v582_n28_p3922_Mangano  |y Registro en la Biblioteca Digital 
961 |a paper_00145793_v582_n28_p3922_Mangano  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 66546