Application of some physical organic chemistry models to the study of oil spills residues in Patagonian soils

The present study focuses on the application of some physical organic chemistry (POC) models for a better understanding of the interactions between oil spills and soil. By studying the sorption behavior of pure compounds, it was possible to examine the application of the multilayer model to the pred...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Nudelman, N.S
Otros Autores: Ríos, S.M, Katusich, O.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2008
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10116caa a22012017a 4500
001 PAPER-6002
003 AR-BaUEN
005 20230518203540.0
008 190411s2008 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-43249103199 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JPOCE 
100 1 |a Nudelman, N.S. 
245 1 0 |a Application of some physical organic chemistry models to the study of oil spills residues in Patagonian soils 
260 |c 2008 
270 1 0 |m Nudelman, N. S.; Department of Organic Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. II, P. 3, Ciudad Universitaria, 1428 Buenos Aires, Argentina; email: nudelman@qo.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Dragun, J., (1998) The Soil Chemistry of the Hazardous Materials, , Amherst Scientific Publishers, Massachusetts 
504 |a Cornelissen, G., Van Noort, P.C.M., Parsons, J.R., Govers, H.A.J., (1997) Environ. Sci. Technol, 31, pp. 454-460 
504 |a Nudelman, N.S., Ríos, S.M., Katusich 0, (2003) Interfacial Applications in Environmental Engineering, , Ed, M. A. Keane, Marcel Dekker Inc, New York 
504 |a Huang, W., Weber, W.A., (1997) Environ. Sci. Technol, 31, pp. 2562-2569 
504 |a Nudelman, N., Ríos, S.M., Katusich 0, (2002) Environ. Technol, 23, pp. 961-970 
504 |a Nudelman, N., Ríos, S.M., Katusich, O., (2000) Environ. Technol, 21, pp. 437-447 
504 |a Marczewski, A.W., Szymula, M., (2002) Coll. Surf. A, 208, pp. 259-266 
504 |a Lee, S.Y., Kim, S.J., (2002) Appl. Clay Sci, 22, pp. 55-63 
504 |a Jain, A.K., Gupta, V.K., Bhatnagar, A., Suhas, J., (2003) J. Hazard. Mater, B101, pp. 31-42 
504 |a Chern, J.M., Chien, Y.W., (2003) Water Res, 37, pp. 2347-2356 
504 |a Parker, A., Rae, J.E., (1998) Environmental Interactions of Clays, , Springer-Verlag Berlin, Heidelberg, New York 
504 |a White, J.C., Pignatello, J.J., (1999) Environ. Sci. Technol, 33, pp. 4292-4298 
504 |a Chung, N., Martin, A., (1998) Environ. Sci. Technol, 32, pp. 855-860 
504 |a Dwarakanath, V., Pope, G., (1998) Environ. Sci. Technol, 32, pp. 1662-1666 
504 |a Ríos, S.M., Nudelman, N.S., Katusich, O., (2004) Latin Am. Appl. Res. J, 34, pp. 149-153 
504 |a Sugiura, K., Ishihara, M., Shimauchi, T., Harayama, S., (1997) Environ. Sci. Technol, 31, pp. 45-51 
504 |a Dutta, T.K., Harayama, S., (2000) Environ. Sci. Technol, 34, pp. 1500-1505 
504 |a Prince, R.C., Garrett, R.M., Bare, R.E., Grossman, M.J., Townsend, T., Suflita, J.M., Lee, K., Lessard, R.R., (2003) Spill Sci. Tech. Bull, 8 (2), pp. 145-156 
504 |a Blomberg, J., Schoenmakers, U.A., Brinkman, U.A.T., (2002) J. Chromatogr. A, 972, pp. 137-173 
504 |a Barron, M.G., Ka'Aihue, L., (2001) Mar. Pollut. Bull, 43 (1-2), pp. 86-92 
504 |a Barakat, A.O., Qian, Y., Kim, M., Kennicutt, M.C., (2001) Environ. Int, 27, pp. 291-310 
504 |a Barakat, A.O., Mostafa, A.R., Qian, Y., Kennicut, M.C., (2002) Spill Sci. Tech. Bull, 7, pp. 229-239 
504 |a Snape, I., Ferguson, S.H., Harvey, P.M.A., Riddle, M.J., (2006) Chemosphere, 63, pp. 89-98 
504 |a Hairber, S., Buddrus, J., (2002) Fuel, 81, pp. 981-987 
504 |a Speight, J.G., (1991) The Chemistry and Technology of Petroleum, , Marcel Dekker, New York 
504 |a Kapur, G.S., Singh, A.P., Sarpal, A.S., (2000) Fuel, 79, pp. 1023-1029 
504 |a Yang, Y., Liu, B., Xi, H., Sun, X., Zhang, T., (2003) Fuel, 82, pp. 721-727 
504 |a Harrison, A., (1995) Fractals in Chemistry, pp. 69-72. , Oxford Science Publications, Oxford 
504 |a Rios, S.M., Nudelman, N.S., (2005) J. Disp. Sci. Technol, 26, pp. 1-8 
504 |a Hundal, L.S., Thompson, M.L., Laird, D.A., Carmo, A.M., (2001) Environ. Sci. Technol, 35, pp. 3456-3461 
504 |a Szymula, M., Marczewski, A.W., (2002) Appl. Surf. Sci, 196, pp. 301-311 
504 |a Katritzky, A.R., Tamm, T., Wang, Y., Karelson, M., (1999) J. Chem. Inf. Comput. Sci, 39, pp. 692-699 
504 |a Macleod, C.J.A., Semple, K.T., (2000) Environ. Sci. Technol, 34, pp. 4952-4957 
504 |a Dutta, T.K., Harayama, S., (2001) Environ. Sri. Technol, 35, pp. 102-107 
504 |a Galimberti, R., Ghiselli, C., Chiaramonte, M.A., (2000) Org. Geochem, 31, pp. 1375-1386 
504 |a Tomczyk, N.A., Winans, R.E., (2001) Energy Fuels, 15, pp. 1498-1504 
504 |a Maki, H., Sasaki, T., Harayama, S., (2001) Chemosphere, 44, pp. 1145-1151 
504 |a Yong, T.M., Mohamed, A., Warkentin, B., (1992) The Principles of Contaminant Transport in Soils, , Elsevier, NY 
504 |a Ríos, S.M., Nudelman, N.S., The complete set of data of the GC analyses for all the samples and full details on the procedures will be submitted elsewhere 
504 |a Brandyik, J., Daling, S., (1998) Chemom. Intell. Lab. Syst, 42, pp. 73-91 
504 |a Kapur, G.S., Berger, S., (2002) Fuel, 81, pp. 883-892 
504 |a C. A. Sylwan, J. Iberian Geol. 2001, 27, 123-157; Nakamatsu, V., Luque, J., Ciano, N., Amari, M., Utrilla, V., Lisoni, C., 3era Jornadas de Preservatión de Agua, Aire y Suelo en la Industria del Petroleo y del Gas; IAPG II, pp. 213-222 
504 |a Commendatore, M.G., Esteves, J.L., Colombo, J.C., (2000) Mar. Pollut. Bull, 40, pp. 989-998 
504 |a Mu, L., Drago, R.S., Richarson, D.E., (1998) J. Chem. Soc. Perkin. Trans, 2, pp. 159-164 
504 |a Fowler, F.W., Katritzky, A.R., Rutherford, R.J.D., (1971) J. Chem. Soc. B, p. 460 
504 |a Davis, K.M.C., (1967) J. Chem. Soc. B, pp. 1128-1130 
504 |a Walter, W., Bauer, 0.H., (1977) Liebigs Ann. Chem, pp. 421-429 
504 |a Swain, C.G., Swain, M.S., Powell, A.L., Alunni, S., (1983) J. Am. Chem. Soc, 105, pp. 502-513 
504 |a Oshima, T., Arikata, S., Nagai, T., (1981) J. Chem. Res, pp. 204-205. , S 
504 |a Buncel, E., Rajagopal, S., (1989) J. Org. Chem, 54, pp. 798-809 
504 |a Catalán, J., Díaz, C., López, V., Pérez, P., de Paz, J.L.G., Rodríguez, J.G., (1996) Liebigs Ann, pp. 1785-1794 
504 |a Sergent, M., Luu, R.P.T., Elguero, J., (1997) Anales de Quím, 93, pp. 71-76. , Int. Ed 
504 |a Laurence, C., Queignee-Cabanetos, M., Dziembowska, T., Queignee, R., Wojtkowiak, B., (1981) J. Am. Chem. Soc, 103, pp. 2567-2573 
520 3 |a The present study focuses on the application of some physical organic chemistry (POC) models for a better understanding of the interactions between oil spills and soil. By studying the sorption behavior of pure compounds, it was possible to examine the application of the multilayer model to the prediction of crude oil isotherms. The difference between the predicted and experimental oil isotherms was only 13%, which indicates the reliability of the model. The distribution coefficients, Kd of soil samples containing oil residuals of different ages, were also determined using methanol as a co-solvent. Desorption experiments showed that they are a function of the polarity of the liquid phases; the Kds, calculated by applying a model derived from the solvophobic theory, increase with increasing age. On the other hand, the natural attenuation of oil spills was studied by using GC and 1H NMR techniques. Signals for four types of aliphatic and for the aromatic protons were clearly assigned; signals for alcohol (OH) and carboxylic (COOH) protons were also observed; compounds exhibiting these polar groups are usually not detected in the GC-FID conventional analysis. The principal component analysis (PCA) of Kd and the parameters determined by GC and NMR, showed that the first and second PC, accounted for more than 95 and 81% of variance, for NMR and GC parameters, respectively. The detailed results suggest that the 1H NMR data would be more useful than GCs to evaluate the environmental transformations that oil spills undergo in Patagonian soils. Nevertheless, direct extrapolation of the present results to other environments is not possible because the changes depend strongly on the original chemical composition of the crude oil and the variable exposure conditions along the time. Copyright © 2008 John Wiley & Sons, Ltd.  |l eng 
593 |a Department of Organic Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. II, P. 3, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
593 |a Department of Chemistry, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Km 4, 9000 Comodoro Rivadavia, Chubut, Argentina 
690 1 0 |a BET MODEL 
690 1 0 |a CRUDE OIL SORPTION 
690 1 0 |a DISTRIBUTION COEFFICIENTS 
690 1 0 |a OIL NMR PARAMETERS 
690 1 0 |a OIL RESIDUES 
690 1 0 |a OIL SPILL 
690 1 0 |a PCA 
690 1 0 |a CRUDE PETROLEUM 
690 1 0 |a ISOTHERMS 
690 1 0 |a METHANOL 
690 1 0 |a NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 
690 1 0 |a PRINCIPAL COMPONENT ANALYSIS 
690 1 0 |a SOILS 
690 1 0 |a SORPTION 
690 1 0 |a BET MODEL 
690 1 0 |a DISTRIBUTION COEFFICIENTS 
690 1 0 |a OIL RESIDUES 
690 1 0 |a PHYSICAL ORGANIC CHEMISTRY (POC) MODELS 
690 1 0 |a OIL SPILLS 
700 1 |a Ríos, S.M. 
700 1 |a Katusich, O. 
773 0 |d 2008  |g v. 21  |h pp. 329-337  |k n. 4  |p J Phys Org Chem  |x 08943230  |w (AR-BaUEN)CENRE-576  |t Journal of Physical Organic Chemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-43249103199&doi=10.1002%2fpoc.1335&partnerID=40&md5=06890735e09bf170bb7357ebdba2268e  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/poc.1335  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_08943230_v21_n4_p329_Nudelman  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08943230_v21_n4_p329_Nudelman  |y Registro en la Biblioteca Digital 
961 |a paper_08943230_v21_n4_p329_Nudelman  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 66955