Dynamical regulation of ligand migration by a gate-opening molecular switch in truncated hemoglobin-N from Mycobacterium tuberculosis

Truncated hemoglobin-N is believed to constitute a defense mechanism of Mycobacterium tuberculosis against NO produced by macrophages, which is converted to the harmless nitrate anion. This process is catalyzed very efficiently, as the enzyme activity is limited by ligand diffusion. By using extende...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bidon-Chanal, A.
Otros Autores: Martí, M.A, Estrin, D.A, Luque, F.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09676caa a22012737a 4500
001 PAPER-6591
003 AR-BaUEN
005 20230518203617.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-34249819653 
024 7 |2 cas  |a glycine, 56-40-6, 6000-43-7, 6000-44-8; hemoglobin, 9008-02-0; phenylalanine, 3617-44-5, 63-91-2; tyrosine, 16870-43-2, 55520-40-6, 60-18-4; Hemoglobins; Ligands; Oxygen, 7782-44-7; Oxygenases, 1.13.-; nitric oxide dioxygenase, 1.14.13.- 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JACSA 
100 1 |a Bidon-Chanal, A. 
245 1 0 |a Dynamical regulation of ligand migration by a gate-opening molecular switch in truncated hemoglobin-N from Mycobacterium tuberculosis 
260 |c 2007 
270 1 0 |m Estrin, D.A.; Departamento de Quimica Inorganica, Analitica Y Quimica Fisica/INQUIMAE-CONICET, Facultad de Ciencias Exactas Y Naturales, Pabellón 2, Buenos Aires, CI428EHA, Argentina; email: dario@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Bloom, B.R., (1994) Tuberculosis: Pathogenesis, Protection and Control, , ASM Press: Washington D.C 
504 |a Ouellet, H., Ouellet, Y., Richard, C., Labarre, M., Wittenberg, B., Wittenberg, J., Guertin, M., (2002) Proc. Natl. Acad. Sci. U.S.A, 99, p. 5902 
504 |a Couture, M., Yeh, S.R., Wittenberg, B.A., Wittenberg, J.B., Ouellet, Y., Rousseau, D.L., Guertin, M., (1999) Proc. Natl. Acad. Sci. U.S.A, 96, p. 11223 
504 |a Pathania, R., Navani, N.K., Gardner, A.M., Gardner, P.R., Dikshit, K.L., (2002) Mol. Microbiol, 45, p. 1303 
504 |a MacMicking, J.D., North, R.J., LaCourse, R., Mudgett, J.S., Shah, S.K., Nathan, C.F., (1997) Proc. Natl. Acad. Sci. U.S.A, 94, p. 5243 
504 |a Shiloh, M.U., Nathan, C.F., (2000) Curr. Opin. Microbiol, 3, p. 35 
504 |a Moens, L., Vanfleteren, J., van de Peer, Y., Peeters, K., Kapp, O., Czeluzniak, J., Goodman, M., Vinogradov, S., (1996) Mol. Biol. Evol, 13, p. 324 
504 |a Pesce, A., Couture, M., Dewilde, S., Guertin, M., Yamauchi, K., Ascenzi, P., Moens, L., Bolognesi, M., (2000) EMBO J, 19, p. 2424 
504 |a Milani, M., Pesce, A., Nardini, M., Ouellet, H., Ouellet, Y., Dewilde, S., Bocedi, A., Bolognesi, M., (2005) J. Inorg. Biochem, 99, p. 97 
504 |a Milani, M., Pesce, A., Ouellet, Y., Ascenzi, P., Guertin, M., Bolognesi, M., (2001) EMBO J, 20, p. 3902 
504 |a Milani, M., Pesce, A., Ouellet, Y., Dewilde, S., Friedman, J.M., Ascenzi, P., Guertin, M., Bolognesi, M., (2004) J. Biol. Chem, 279, p. 21520 
504 |a Crespo, A., Martí, M.A., Kalko, S.G., Morreale, A., Orozco, M., Gelpí, J.L., Luque, F.J., Estrin, D.A., (2005) J. Am. Chem. Soc, 127, p. 4433 
504 |a Bidon-Chanal, A., Martí, M.A., Crespo, A., Milani, M., Orozco, M., Bolognesi, M., Luque, F.J., Estrin, D.A., (2006) Proteins, 64, p. 457 
504 |a Ouellet, Y., Milani, M., Couture, M., Bolognesi, M., Guertin, M., (2006) Biochemistry, 45, p. 8770 
504 |a Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., (1983) J. Chem. Phys, 79, p. 926 
504 |a Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Di Nola, A., Haak, J.R., (1984) J. Chem. Phys, 81, p. 3684 
504 |a Darden, T.A., York, D., Pedersen, L., (1993) J. Chem. Phys, 98, p. 10089 
504 |a Wang, J., Cieplak, P., Kollman, P.A., (2000) J. Comput. Chem, 21, p. 1049 
504 |a Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.R., Cheatham III, T.E., DeBolt, S., Ferguson, D., Kollman, P., (1995) Comp. Phys. Commun, 91, p. 1 
504 |a Bayly, C.I., Cieplak, P., Cornell, W., Kollman, P.A., (1993) J. Phys. Chem, 97, p. 10269 
504 |a Gelpí, J.L., Kalko, S., de la Cruz, X., Barril, X., Cirera, J., Luque, F.J., Orozco, M., (2001) Proteins, 45, p. 428 
504 |a Amadei, A., Linssen, A.B.M., Berendsen, H.J.C., (1993) Proteins, 17, p. 412 
504 |a Meyer, T., Ferrer-Costa, C., Pérez, A., Rueda, M., Bidon-Chanal, A., Luque, F.J., Laughton, C.A., Orozco, M., (2006) J. Chem. Theory Comput, 1, p. 251 
504 |a Yeh, S.R., Couture, M., Ouellet, Y., Guertin, M., Rousseau, D.L., (2000) J. Biol. Chem, 275, p. 1679 
504 |a Mukai, M., Ouellet, Y., Guertin, M., Yeh, S.-R., (2004) Biochemistry, 43, p. 2764 
504 |a Dantsker, D., Samuni, U., Ouellet, Y., Wittenberg, B.A., Wittenberg, J.B., Milani, M., Bolognesi, M., Friedman, J.M., (2004) J. Biol. Chem, 279, p. 38844 
504 |a Samuni, U., Dantsker, D., Ray, A., Wittenberg, J.B., Wittenberg, B.A., Dewilde, S., Moens, L., Friedman, J.M., (2003) J. Biol. Chem, 278, p. 27241 
504 |a Schotte, F., Lim, M., Jackson, T.A., Smirnov, A.V., Soman, J., Olson, J.S., Phillips Jr., G.N., Anfinrud, P.A., (2003) Science, 300, p. 1944 
504 |a Chu, K., Vojtchovský, J., McMahon, B.H., Sweet, R.M., Berendzen, J., Schlichting, I., (2000) Nature, 403, p. 921 
504 |a Case, D.A., Karplus, M., (1979) J. Mol. Biol, 132, p. 343 
504 |a Bossa, C., Anselmi, M., Roccatano, D., Amadei, A., Vallone, B., Brunori, M., Di Nola, A., (2004) Biophys. J, 86, p. 3855 
504 |a Nutt, D.R., Meuwly, M., (2004) Proc. Natl. Acad. Sci. U.S.A, 101, p. 5998 
504 |a Marsella, L., (2006) Proteins, 62, p. 173 
504 |a Ascenzi, P., Salvati, L., Brunori, M., (2001) FEBS Lett, 501, p. 103 
504 |a Eich, R.F., Li, T., Lemon, D.D., Doherty, D.H., Curry, S.R., Aitken, J.F., Mathews, A.J., Olson, J.S., (1996) Biochemistry, 35, p. 6976 
504 |a Brunori, M., Giuffrè, A., Nienhaus, K., Nienhaus, G.U., Scandurra, F.M., Vallone, B., (2005) Proc. Natl. Acad. Sci. U.S.A, 102, p. 8483 
504 |a Lama, A., Pawaria, S., Dikshit, K.L., (2006) FEBS Lett, 580, p. 4031 
520 3 |a Truncated hemoglobin-N is believed to constitute a defense mechanism of Mycobacterium tuberculosis against NO produced by macrophages, which is converted to the harmless nitrate anion. This process is catalyzed very efficiently, as the enzyme activity is limited by ligand diffusion. By using extended molecular dynamics simulations we explore the mechanism that regulates ligand diffusion and, particularly, the role played by residues that assist binding of O2 to the heme group. Our data strongly support the hypothesis that the access of NO to the heme cavity is dynamically regulated by the TyrB10-GlnE11 pair, which acts as a molecular switch that controls opening of the ligand diffusion tunnel. Binding of O2 to the heme group triggers local conformational changes in the TyrB10-GlnE11 pair, which favor opening of the PheE15 gate residue through global changes in the essential motions of the protein skeleton. The complex pattern of conformational changes triggered upon O2 binding is drastically altered in the GlnE11→Ala and TyrB10→Phe mutants, which justifies the poor enzymatic activity observed experimentally for the TyrB10→Phe form. The results support a molecular mechanism evolved to ensure access of NO to the heme cavity in the oxygenated form of the protein, which should warrant survival of the microorganism under stress conditions. © 2007 American Chemical Society.  |l eng 
593 |a Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Avenida Diagonal 643, 08028, Barcelona, Spain 
593 |a Departamento de Quimica Inorganica, Analitica Y Quimica Fisica/INQUIMAE-CONICET, Facultad de Ciencias Exactas Y Naturales, Pabellón 2, Buenos Aires, CI428EHA, Argentina 
690 1 0 |a DYNAMICAL REGULATION 
690 1 0 |a LIGAND MIGRATION 
690 1 0 |a MOLECULAR MECHANISMS 
690 1 0 |a MYCOBACTERIUM TUBERCULOSIS 
690 1 0 |a CONFORMATIONS 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a HEMOGLOBIN 
690 1 0 |a MACROPHAGES 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a NEGATIVE IONS 
690 1 0 |a NITROGEN OXIDES 
690 1 0 |a LIGANDS 
690 1 0 |a GLYCINE 
690 1 0 |a HEMOGLOBIN 
690 1 0 |a HEMOGLOBIN N 
690 1 0 |a LIGAND 
690 1 0 |a PHENYLALANINE 
690 1 0 |a TYROSINE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ARTICLE 
690 1 0 |a CONFORMATIONAL TRANSITION 
690 1 0 |a DIFFUSION 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a MYCOBACTERIUM TUBERCULOSIS 
690 1 0 |a NONHUMAN 
690 1 0 |a OXYGEN AFFINITY 
690 1 0 |a REGULATORY MECHANISM 
690 1 0 |a SIMULATION 
690 1 0 |a AMINO ACID SUBSTITUTION 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a HEMOGLOBINS 
690 1 0 |a HYDROGEN BONDING 
690 1 0 |a LIGANDS 
690 1 0 |a MODELS, MOLECULAR 
690 1 0 |a MYCOBACTERIUM TUBERCULOSIS 
690 1 0 |a OXYGEN 
690 1 0 |a OXYGENASES 
690 1 0 |a PROTEIN CONFORMATION 
700 1 |a Martí, M.A. 
700 1 |a Estrin, D.A. 
700 1 |a Luque, F.J. 
773 0 |d 2007  |g v. 129  |h pp. 6782-6788  |k n. 21  |p J. Am. Chem. Soc.  |x 00027863  |w (AR-BaUEN)CENRE-19  |t Journal of the American Chemical Society 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-34249819653&doi=10.1021%2fja0689987&partnerID=40&md5=94b12c1bc1be54edb9e3fc357bd03f50  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/ja0689987  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00027863_v129_n21_p6782_BidonChanal  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v129_n21_p6782_BidonChanal  |y Registro en la Biblioteca Digital 
961 |a paper_00027863_v129_n21_p6782_BidonChanal  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 67544