Chromatic scheduling polytopes coming from the bandwidth allocation problem in point-to-multipoint radio access systems

Point-to-Multipoint systems are a kind of radio systems supplying wireless access to voice/data communication networks. Such systems have to be run using a certain frequency spectrum, which typically causes capacity problems. Hence it is, on the one hand, necessary to reuse frequencies but, on the o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Marenco, J.L
Otros Autores: Wagler, A.K
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05344caa a22005297a 4500
001 PAPER-6692
003 AR-BaUEN
005 20230518203624.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33846872385 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Marenco, J.L. 
245 1 0 |a Chromatic scheduling polytopes coming from the bandwidth allocation problem in point-to-multipoint radio access systems 
260 |c 2007 
270 1 0 |m Marenco, J.L.; Departamento de Computación, FCEN, Ciudad Universitaria, (1428) Buenos Aires, Argentina; email: jmarenco@dc.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Bley, A., Eisenblätter, A., Grötschel, M., Wagler, A., Wessäly, R., (1999) Frequenzplanung für Punkt- zu Mehrpunkt-Funksysteme, , Abschlußbericht eines Projekts der BOSCH Telecom GmbH und des Konrad-Zuse-Zentrums für Informationstechnik Berlin 
504 |a Brucker, P., (1998) Scheduling Algorithms, , Springer-Verlag 
504 |a Bixby, R.E., M. Ienelon, A. Gu, E. Rothberg, and R. Wunderling. (2004). Mixed-Integer Programming: A Progress Report. In M. Grötschel (Ed.), The Sharpest Cut: The Impact of Manfred Padberg and His Work. Philadelphia: SIAM/MPS Series on Optimization 4; de Werra, D., Gay, Y., Chromatic Scheduling nd Frequency Assignment (1994) Discrete Appl, Math, 49, pp. 165-174 
504 |a de Werra, D., Hertz, A., Consecutive Colorings of Graphs (1988) ZOR, 32, pp. 1-8 
504 |a Garey, M., Johnson, D., (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness, , W.H. Freeman and Company 
504 |a Gerhardt, A., (1999) Polyedrische Untersuchungen von Zwei-Maschinen-Scheduling-Problemen mit Antipar-allelitätsbedingungen, , Master thesis, Technische Universität Berlin 
504 |a Golumbic, M.C., (1980) Algorithmic Graph Theory and Perfect Graphs, , Academic Press 
504 |a Kubale, M., Interval Vertex-Coloring of a Graph With Forbidden Colors (1989) Discrete Math, 74, pp. 125-136 
504 |a Marenco, J., (2005) Chromatic Scheduling Polytopes Coming from the. Bandwidth Allocation Problem in Point-to-Multipoint Radio Access Systems, , Ph.D thesis, Universidad de Buenos Aires 
504 |a Nemhauser, G., Wolsey, L., (1988) Integer Programming and Combinatorial Optimization, , John Wiley & Sons 
504 |a Wolsey, L., (1998) Integer Programming, , John Wiley & Sons 
520 3 |a Point-to-Multipoint systems are a kind of radio systems supplying wireless access to voice/data communication networks. Such systems have to be run using a certain frequency spectrum, which typically causes capacity problems. Hence it is, on the one hand, necessary to reuse frequencies but, on the other hand, no interference must be caused thereby. This leads to a combinatorial optimization problem, the bandwidth allocation problem, a special case of so-called chromatic scheduling problems. Both problems are NP-hard and it is known that, for these problems, there exist no polynomial time algorithms with a fixed approximation ratio. Algorithms based on cutting planes have shown to be successful for many other combinatorial optimization problems. In order to apply such methods, knowledge on the associated polytopes is required. The present paper contributes to this issue, exploring basic properties of chromatic scheduling polytopes and several classes of facet-defining inequalities. © Springer Science+Business Media, LLC 2007.  |l eng 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires, X036 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, 11-09112 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, 644/98 
536 |a Detalles de la financiación: Deutsche Forschungsgemeinschaft, Gr 883/9–1 
536 |a Detalles de la financiación: J. L. Marenco: This work supported by UBACYT Grant X036, CONICET Grant 644/98 and ANPCYT Grant 11-09112. 
536 |a Detalles de la financiación: A. K. Wagler: This work supported by the Deutsche Forschungsgemeinschaft (Gr 883/9–1). 
593 |a Departamento de Computación, FCEN, Ciudad Universitaria, (1428) Buenos Aires, Argentina 
593 |a Otto-von-Guericke-University of Magdeburg, Faculty of Mathematics/IMO, Universitätsplatz 2, 39106 Magdeburg, Germany 
690 1 0 |a BANDWIDTH ALLOCATION 
690 1 0 |a POLYHEDRAL COMBINATORICS 
700 1 |a Wagler, A.K. 
773 0 |d 2007  |g v. 150  |h pp. 159-175  |k n. 1  |p Ann. Oper. Res.  |x 02545330  |t Annals of Operations Research 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33846872385&doi=10.1007%2fs10479-006-0156-y&partnerID=40&md5=99be789ed9c6486ff203a3e09490b731  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s10479-006-0156-y  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_02545330_v150_n1_p159_Marenco  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02545330_v150_n1_p159_Marenco  |y Registro en la Biblioteca Digital 
961 |a paper_02545330_v150_n1_p159_Marenco  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 67645