Characterizations and linear time recognition of helly circular-arc graphs

A circular-arc model (C, A) is a circle C together with a collection A of arcs of C. If A satisfies the Helly Property then (C, A) is a Helly circular-arc model. A (Helly) circular-arc graph is the intersection graph of a (Helly) circular-arc model. Circular-arc graphs and their subclasses have been...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lin, M.C
Otros Autores: Szwarcfiter, J.L
Formato: Acta de conferencia Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Verlag 2006
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04981caa a22006017a 4500
001 PAPER-6934
003 AR-BaUEN
005 20230518203639.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33749580075 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Lin, M.C. 
245 1 0 |a Characterizations and linear time recognition of helly circular-arc graphs 
260 |b Springer Verlag  |c 2006 
270 1 0 |m Lin, M.C.; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Computación, Buenos Aires, Argentina; email: oscarlin@dc.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Deng, X., Hell, P., Huang, J., Linear time representation algorithms for proper circular-arc graphs and proper interval graphs (1996) SIAM J. Computing, 25, pp. 390-403 
504 |a Gavril, F., Algorithms on circular-arc graphs (1974) Networks, 4, pp. 357-369 
504 |a Golumbic, M.C., (1980) Algorithmic Graph Theory and Perfect Graphs, , Academic Press, 2nd ed. 2004 
504 |a Habib, M., McConnell, R.M., Paul, C., Viennot, L., Lex-bfs and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing (2000) Theoretical Computer Science, 234, pp. 59-84 
504 |a Kaplan, H., Nussbaum, Y., A simpler linear-time recognition of circular-arc graphs (2006) 10th Scandinavian Workshop on Algorithm Theory, , accepted for publication in 
504 |a Lin, M.C., Szwarcfiter, J.L., Efficient construction of unit circular-arc models (2006) Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 309-315 
504 |a McConnell, R.M., Linear-time recognition of circular-arc graphs (2003) Algorithmica, 37 (2), pp. 93-147 
504 |a Spinrad, J., Efficient graph representations (2003) American Mathematical Society 
504 |a Tucker, A., Characterizing circular-arc graphs (1970) Bull. American Mathematical Society, 76, pp. 1257-1260A4 - 
520 3 |a A circular-arc model (C, A) is a circle C together with a collection A of arcs of C. If A satisfies the Helly Property then (C, A) is a Helly circular-arc model. A (Helly) circular-arc graph is the intersection graph of a (Helly) circular-arc model. Circular-arc graphs and their subclasses have been the object of a great deal of attention, in the literature. Linear time recognition algorithm have been described both for the general class and for some of its subclasses. However, for Helly circular-arc graphs, the best recognition algorithm is that by Gavril, whose complexity is O(n3). In this article, we describe different characterizations for Helly circular-arc graphs, including a characterization by forbidden induced subgraphs for the class. The characterizations lead to a linear time recognition algorithm for recognizing graphs of this class. The algorithm also produces certificates for a negative answer, by exhibiting a forbidden subgraph of it, within this same bound. © Springer-Verlag Berlin Heidelberg 2006.  |l eng 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Computación, Buenos Aires, Argentina 
593 |a Universidade Federal do Rio de Janeiro, Instituto de Matemática, COPPE, Caixa Postal 2324, 20001-970 Rio de Janeiro, RJ, Brazil 
690 1 0 |a ALGORITHMS 
690 1 0 |a CIRCULAR-ARC GRAPHS 
690 1 0 |a FORBIDDEN SUBGRAPHS 
690 1 0 |a HELLY CIRCULAR-ARC GRAPHS 
690 1 0 |a ALGORITHMS 
690 1 0 |a COMPUTATIONAL COMPLEXITY 
690 1 0 |a COMPUTATIONAL METHODS 
690 1 0 |a GRAPHIC METHODS 
690 1 0 |a MATHEMATICAL MODELS 
690 1 0 |a TIME SERIES ANALYSIS 
690 1 0 |a CIRCULAR-ARC GRAPHS 
690 1 0 |a FORBIDDEN SUBGRAPHS 
690 1 0 |a HELLY CIRCULAR-ARC MODEL 
690 1 0 |a RECOGNITION ALGORITHMS 
690 1 0 |a GRAPH THEORY 
700 1 |a Szwarcfiter, J.L. 
711 2 |c Taipei  |d 15 August 2006 through 18 August 2006  |g Código de la conferencia: 68290 
773 0 |d Springer Verlag, 2006  |g v. 4112 LNCS  |h pp. 73-82  |p Lect. Notes Comput. Sci.  |n Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)  |x 03029743  |w (AR-BaUEN)CENRE-983  |z 3540369252  |z 9783540369257  |t 12th Annual International Conference on Computing and Combinatorics, COCOON 2006 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33749580075&partnerID=40&md5=b3af274a99b4f0352a74e07f1e92eeba  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03029743_v4112LNCS_n_p73_Lin  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v4112LNCS_n_p73_Lin  |y Registro en la Biblioteca Digital 
961 |a paper_03029743_v4112LNCS_n_p73_Lin  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 67887