Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N

Mycobacterium tuberculosis, the causative agent of human tuberculosis, is forced into latency by nitric oxide produced by macrophages during infection. In response to nitrosative stress M. tuberculosis has evolved a defense mechanism that relies on the oxygenated form of "truncated hemoglobin&q...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bidon-Chanal, A.
Otros Autores: Martí, M.A, Crespo, A., Milani, M., Orozco, M., Bolognesi, M., Luque, F.J, Estrin, D.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Wiley-Liss Inc. 2006
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11491caa a22012257a 4500
001 PAPER-7065
003 AR-BaUEN
005 20230518203648.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33745593982 
024 7 |2 cas  |a dioxygenase, 37292-90-3; heme, 14875-96-8; hemoglobin, 9008-02-0; nitrate, 14797-55-8; nitric oxide, 10102-43-9; oxygen, 7782-44-7 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PSFGE 
100 1 |a Bidon-Chanal, A. 
245 1 0 |a Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N 
260 |b Wiley-Liss Inc.  |c 2006 
270 1 0 |m Luque, F.J.; University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain; email: fjluque@ub.edu 
506 |2 openaire  |e Política editorial 
504 |a Bloom, B.R., (1994) Tuberculosis: Pathogenesis, Protection and Control, , Washington, DC: ASM Press 
504 |a MacMicking, J.D., North, R.J., LaCourse, R., Mudgett, J.S., Shah, S.K., Nathan, C.F., Identification of nitric oxide synthase as a protective locus against tuberculosis (1997) Proc Natl Acad Sci USA, 94, pp. 5243-5248 
504 |a Quellet, H., Quellet, Y., Richard, C., Labarre, M., Wittenberg, B., Wittenberg, J., Guertin, M., Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide (2002) Proc Natl Acad Sci USA, 99, pp. 5902-5907 
504 |a Couture, M., Yeh, S.R., Wittenberg, B.A., Wittenberg, J.B., Ouellet, Y., Rousseau, D.L., Guertin, M., A cooperative oxygen-binding hemoglobin from Mycobacterium tuberculosis (1999) Proc Natl Acad Sci USA, 96, pp. 11223-11228 
504 |a Moens, L., Globins in nonvertebrate species: Dispersal by horizontal gene transfer and evolution of the structure-function relationships (1996) Mol Biol Evol, 13, pp. 324-333 
504 |a Pesce, A., Couture, M., Dewilde, S., Guertin, M., Yamauchi, K., Ascenzi, P., Moens, L., Bolognesi, M., A novel two-over-two alpha-helical sandwich fold is characteristic of the truncated hemoglobin family (2000) EMBO J, 19, pp. 2424-2434 
504 |a Milani, M., Pesce, A., Nardini, M., Oellet, H., Ouellet, Y., Dewilde, S., Bocedi, A., Bolognesi, M., Structural bases for heme binding and diatomic ligand recognition in truncated hemoglobins (2005) J Inorg Biochem, 99, pp. 97-109 
504 |a Milani, M., Pesce, A., Ouellet, Y., Ascenzi, P., Guertin, M., Bolognesi, M., Mycobacterium tuberculosis hemoglobin N displays a protein tunnel suited for O2 diffusion to the heme (2001) EMBO J, 20, pp. 3902-3909 
504 |a Milani, M., Pesce, A., Ouellet, Y., Dewilde, S., Friedman, J.M., Ascenzi, P., Guertin, M., Bolognesi, M., Heme-ligand tunneling in group I truncated hemoglobins (2004) J Biol Chem, 279, pp. 21520-21525 
504 |a Samuni, U., Dantsker, D., Ray, A., Wittenberg, J.B., Wittenberg, B.A., Dewilde, S., Moens, L., Friedman, J.M., Kinetic modulation in carbonmonoxy derivatives of truncated hemoglobins: The role of distal heme pocket residues and extended apolar tunnel (2003) J Biol Chem, 278, pp. 27241-27250 
504 |a Dantsker, D., Samuni, U., Ouellet, Y., Wittenberg, B.A., Wittenberg, J.B., Milani, M., Bolognesi, M., Friedman, J.M., Viscosity-dependent relaxation significantly modulates the kinetics of CO recombination in the truncated hemoglobin TrHbN from Mycobacterium tuberculosis (2004) J Biol Chem, 279, pp. 38844-38853 
504 |a Crespo, A., Martí, M.A., Kalko, S.G., Morreale, A., Orozco, M., Gelpi, J.L., Luque, F.J., Estrin, D.A., Theoretical study of the truncated hemoglobin HbN: Exploring the molecular basis of the NO detoxification mechanism (2005) J Am Chem Soc, 127, pp. 4433-4444 
504 |a Schotte, F., Lim, M., Jackson, T.A., Smirnov, A.V., Soman, J., Olson, J.S., Phillips Jr., G.N., Anfinrud, P.A., Watching a protein as it function with 150 ps time resolved X-ray crystallography (2003) Science, 300, pp. 1944-1947 
504 |a Chu, K., Vojtchovský, J., McMahon, B.H., Sweet, R.M., Berendzen, J., Schlichting, I., Structure of a ligand binding intermediate in wild type carbonmonoxy myoglobin (2000) Nature, 403, pp. 921-923 
504 |a Case, D.A., Karplus, M., Dynamics of ligand binding to heme proteins (1979) J Mol Biol, 132, pp. 343-368 
504 |a Bossa, C., Anselmi, M., Roccatano, D., Amadei, A., Vallone, B., Brunori, M., Di Nola, A., Extended molecular dynamics simulation of the carbon monoxide migration in sperm whale myoglobin (2004) Biophys J, 86, pp. 3855-3862 
504 |a Nutt, D.R., Meuwly, M., CO migration in native and mutant myoglobin: Atomistic simulations for the understanding of protein function (2004) Proc Natl Acad Sci USA, 101, pp. 5998-6002 
504 |a Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of sample potential functions for simulating liquid water (1983) J Chem Phys, 79, pp. 926-935 
504 |a Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Di Nola, A., Haak, J.R., Molecular dynamics with coupling to an external bath (1984) J Chem Phys, 81, pp. 3684-3690 
504 |a Leach, A.R., (2001) Molecular Modelling. 2nd Ed., , Englewood Cliffs, NJ: Prentice Hall 
504 |a Wang, J., Cieplak, P., Kollman, P.A., How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? (2000) J Comput Chem, 21, pp. 1049-1074 
504 |a Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.R., Cheatham III, T.E., Debolt, S., Ferguson, D., Kollman, P., AMBER, a computer program for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to elucidate the structures and energies of molecules (1995) Comp Phys Commun, 91, pp. 1-41 
504 |a Bayly, C.I., Cieplak, P., Cornell, W., Kollman, P.A., A well behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model (1993) J Phys Chem, 97, pp. 10269-10280 
504 |a Jarzynski, C., Non equilibrium equality for free energy differences (1997) Phys Rev Lett, 78, pp. 2690-2693 
504 |a Amadei, A., Linssen, A.B.M., Berendsen, H.J.C., Essential dynamics of proteins (1993) Proteins, 17, pp. 412-415 
504 |a Mukai, M., Ouellet, Y., Guertin, M., Yeh, S.-R., NO binding induced conformational changes in a truncated hemoglobin from Mycobacterium tuberculosis (2004) Biochemistry, 43, pp. 2764-2770 
504 |a Ascenzi, P., Salvati, L., Brunori, M., Does myoglobin protect Trypanosoma cruzi from the antiparasitic effects of nitric oxide? (2001) FEBS Lett, 501, pp. 103-105 
504 |a Eich, R.F., Li, T., Lemon, D.D., Doherty, D.H., Curry, S.R., Aitken, J.F., Mathews, A.J., Olson, J.S., Mechanism of NO-induced oxidation of myoglobin and hemoglobin (1996) Biochemistry, 35, pp. 6976-6983 
504 |a Brunori, M., Giuffrè, A., Nienhaus, K., Ulrich Nienhaus, G., Scandurra, F.M., Vallone, B., Neuroglobin, nitric oxide, and oxygen: Functional pathways and conformational changes (2005) Proc Natl Acad Sci USA, 102, pp. 8483-8488 
520 3 |a Mycobacterium tuberculosis, the causative agent of human tuberculosis, is forced into latency by nitric oxide produced by macrophages during infection. In response to nitrosative stress M. tuberculosis has evolved a defense mechanism that relies on the oxygenated form of "truncated hemoglobin" N (trHbN), formally acting as NO-dioxygenase, yielding the harmless nitrate ion. X-ray crystal structures have shown that trHbN hosts a two-branched protein matrix tunnel system, proposed to control diatomic ligand migration to the heme, as the rate-limiting step in NO conversion to nitrate. Extended molecular dynamics simulations (0.1 μs), employed here to characterize the factors controlling diatomic ligand diffusion through the apolar tunnel system, suggest that O2 migration in deoxy-trHbN is restricted to a short branch of the tunnel, and that O2 binding to the heme drives conformational and dynamical fluctuations promoting NO migration through the long tunnel branch. The simulation results suggest that trHbN has evolved a dual-path mechanism for migration of O2 and NO to the heme, to achieve the most efficient NO detoxification. © 2006 Wiley-Liss, Inc.  |l eng 
593 |a Departament de Fisicoquímica, Facultat de Farmacia, Universität de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain 
593 |a Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina 
593 |a Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, Milano, Italy 
593 |a Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona, Spain 
593 |a Unidad de Modelización Molecular y Bioinformática, Parc Científic de Barcelona, Josep Samitier 1-6, 08028 Barcelona, Spain 
593 |a Span and Computacional Biology Program, Barcelona Supercomputing Center, Edificio Nexus II, Barcelona 08028, Spain 
593 |a University of Buenos Aires, Department of Chemistry, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina 
593 |a University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain 
690 1 0 |a LIGAND MIGRATION 
690 1 0 |a M. TUBERCULOSIS 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a NITRIC OXIDE 
690 1 0 |a DEOXY TRUNCATED HEMOGLOBIN N 
690 1 0 |a DIOXYGENASE 
690 1 0 |a HEME 
690 1 0 |a HEMOGLOBIN 
690 1 0 |a LIGAND 
690 1 0 |a NITRATE 
690 1 0 |a NITRIC OXIDE 
690 1 0 |a OXYGEN 
690 1 0 |a TRUNCATED HEMOGLOBIN N 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ARTICLE 
690 1 0 |a BIOINFORMATICS 
690 1 0 |a CONFORMATIONAL TRANSITION 
690 1 0 |a CRYSTAL STRUCTURE 
690 1 0 |a DEFENSE MECHANISM 
690 1 0 |a DIFFUSION 
690 1 0 |a LATENT PERIOD 
690 1 0 |a MACROPHAGE 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a MYCOBACTERIUM TUBERCULOSIS 
690 1 0 |a NITROSATION 
690 1 0 |a NONHUMAN 
690 1 0 |a OXYGEN AFFINITY 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN CONFORMATION 
690 1 0 |a PROTEIN FUNCTION 
690 1 0 |a SIMULATION 
690 1 0 |a STRUCTURE ANALYSIS 
690 1 0 |a X RAY CRYSTALLOGRAPHY 
690 1 0 |a MYCOBACTERIUM TUBERCULOSIS 
700 1 |a Martí, M.A. 
700 1 |a Crespo, A. 
700 1 |a Milani, M. 
700 1 |a Orozco, M. 
700 1 |a Bolognesi, M. 
700 1 |a Luque, F.J. 
700 1 |a Estrin, D.A. 
773 0 |d Wiley-Liss Inc., 2006  |g v. 64  |h pp. 457-464  |k n. 2  |p Proteins Struct. Funct. Genet.  |x 08873585  |t Proteins: Structure, Function and Genetics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33745593982&doi=10.1002%2fprot.21004&partnerID=40&md5=22187aef7504438cb1f4af0744fa08b5  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/prot.21004  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_08873585_v64_n2_p457_BidonChanal  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08873585_v64_n2_p457_BidonChanal  |y Registro en la Biblioteca Digital 
961 |a paper_08873585_v64_n2_p457_BidonChanal  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 68018