Early increases in transglutaminase activity and polyamine levels in a Mallory-Denk body mouse model

Rodents treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) are a model of two hepatic toxic manifestations: porphyria and the appearance of hepatic cytoplasmic protein aggregates (Mallory-Denk Bodies, MDBs). MDBs are induced after long-term DDC feeding, consist primarily of keratins 8 and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cochón, A.C
Otros Autores: Miño, L.A, San Martín de Viale, L.C
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17244caa a22017177a 4500
001 PAPER-7491
003 AR-BaUEN
005 20230518203714.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77957966716 
024 7 |2 cas  |a 1,4 dihydro 2,4,6 trimethyl 3,5 pyridinedicarboxylic acid diethyl ester, 12772-36-0, 632-93-9; porphyrin, 24869-67-8; protein glutamine gamma glutamyltransferase, 80146-85-6; putrescine, 110-60-1, 333-93-7; spermidine, 124-20-9, 334-50-9; protein glutamine gamma glutamyltransferase, 80146-85-6; 5-diethoxycarbonyl-1,4-dihydrocollidine; Biogenic Polyamines; Porphyrins; Pyridines; Transglutaminases, 2.3.2.13; 3,5-diethoxycarbonyl-1,4-dihydrocollidine; Biogenic Polyamines; Porphyrins; Pyridines; Transglutaminases 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a TOLED 
100 1 |a Cochón, A.C. 
245 1 0 |a Early increases in transglutaminase activity and polyamine levels in a Mallory-Denk body mouse model 
260 |c 2010 
270 1 0 |m Cochón, A.C.; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Departamento de Química Biológica, Ciudad Universitaria, Pab. II. 4to piso, 1428 Buenos Aires, Argentina; email: adcris@qb.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Alhonen, L., Parkkinen, J.J., Keinänen, T., Sinervirta, R., Herzig, K.H., Jänne, J., Activation of polyamine catabolism in transgenic rats induces acute pancreatitis (2000) Proc. Natl. Acad. Sci. U.S.A., 97, pp. 8290-8295 
504 |a Bardag-Gorce, F., Oliva, J., Villegas, J., Fraley, S., Amidi, F., Li, J., Dedes, J., French, S.W., Epigenetic mechanisms regulate Mallory Denk body formation in the livers of drug-primed mice (2008) Exp. Mol. Pathol., 84, pp. 113-121 
504 |a Bardag-Gorce, F., Wilson, L., Nan, L., Li, J., French, B.A., Morgan, T.R., Morgan, K., French, S.W., CYP2E1 inhibition enhances Mallory body formation (2005) Exp. Mol. Pathol., 78, pp. 207-211 
504 |a Casero, R.A., Pegg, A.E., Polyamine catabolism and disease (2009) Biochem. J., 421, pp. 323-338 
504 |a Chopra, S., Wallace, H.M., Induction of spermidine/spermine N-acetyltransferase in human cancer cells in response to increased production of reactive oxygen species (1998) Biochem. Pharmacol., 55, pp. 1119-1123 
504 |a Cochón, A.C., González, N., San Martín de Viale, L.C., Effects of the porphyrinogenic compounds hexachlorobenzene and 3,5-diethoxycarbonyl-1,4-dihydrocollidine on polyamine metabolism (2002) Toxicology, 176, pp. 209-219 
504 |a Cochón, A.C., Mazzetti, M.B., San Martin de Viale, L.C., How hexachlorobenzene impacts biochemistry - recent studies in several tissues (2005) Trends Cell Mol. Biol., 1, pp. 15-34 
504 |a Denk, H., Stumptner, C., Zatloukal, K., Mallory bodies revisited (2000) J. Hepatol., 32, pp. 689-702 
504 |a Denk, H., Gschnait, F., Wolff, K., Hepatocellular hyalin (Mallory bodies) in long term griseofulvin-treated mice: a new experimental model for the study of hyalin formation (1975) Lab. Invest., 32, pp. 773-776 
504 |a Elli, L., Bergamini, C.M., Bardella, M.T., Schuppan, D., Transglutaminases in inflammation and fibrosis of the gastrointestinal tract and the liver (2009) Dig. Liver Dis., 41, pp. 541-550 
504 |a Fesus, L., Piacentini, M., Transglutaminase 2: an enigmatic enzyme with diverse functions (2002) Trends Biochem. Sci., 27, pp. 534-539 
504 |a Fickert, P., Stöger, U., Fuchsbichler, A., Moustafa, T., Marschall, H.-U., Weiglein, A.H., Tsybrovskyy, O., Trauner, M., A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis (2007) Am. J. Pathol., 171, pp. 525-536 
504 |a Folk, J.E., Cole, P.W., Transglutaminase: mechanistic features of the active site as determined by kinetic and inhibitor studies (1966) Biochim. Biophys. Acta, 122, pp. 245-264 
504 |a Folk, J.E., Park, M.H., Chung, S.I., Schrode, J., Lester, E.P., Cooper, H.L., Polyamines as physiological substrates for transglutaminases (1980) J. Biol. Chem., 255, pp. 3695-3700 
504 |a Griffin, M., Casadio, R., Bergamini, C.M., Transglutaminases: nature's biological glues (2002) Biochem. J., 368, pp. 377-396 
504 |a Hanada, S., Snider, N.T., Brunt, E.M., Hollenberg, P.F., Omary, M.B., Gender dimorphic formation of mouse Mallory-Denk bodies and the role of xenobiotic metabolism and oxidative stress (2010) Gastroenterology, 138, pp. 1607-1617 
504 |a Katsuma, Y., Swierenga, S.H.H., Khettry, U., Marceau, N., French, S.W., Changes in the cytokeratin intermediate filament cytoskeleton associated with Mallory body formation in mouse and human liver (1987) Hepatology, 7, pp. 1215-1223 
504 |a Kappas, A., Sassa, S., Galbraith, R.A., Nordmann, Y., The porphyrias (1995) Metabolic and Molecular Basis of Inherited Disease, pp. 2103-2159. , McGraw-Hill, C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle, J.B. Stanbury, J.B. Wibgaarden, D.S. Fredickson (Eds.) 
504 |a Li, J., Bardag-Gorce, F., Dedes, J., French, B.A., Amidi, F., Oliva, J., French, S.W., S-adenosylmethionine prevents Mallory Denk body formation in drug-primed mice by inhibiting the epigenetic memory (2008) Hepatology, 47, pp. 613-624 
504 |a Lorand, L., Graham, R.M., Transglutaminases: crosslinking enzymes with pleiotropic functions (2003) Nat. Rev. Mol. Cell Biol., 4, pp. 140-156 
504 |a Lowry, O.H., Rosebrough, A., Farr, L., Randall, R.S., Protein measurement with the folin phenol reagent (1951) J. Biol. Chem., 249, pp. 265-275 
504 |a Marks, G.S., McCluskey, S.A., Mackie, J.E., Riddick, D.S., James, C.A., Disruption of hepatic heme biosynthesis after interaction of xenobiotics with cytochrome P-450 (1988) FASEB J., 2, pp. 2774-2783 
504 |a Monteiro, H.P., Abdalla, D.S., Augusto, O., Bechara, E.J., Free radical generation during delta-aminolevulinic acid autoxidation: induction by hemoglobin and connections with porphyrinpathies (1989) Arch. Biochem. Biophys., 271, pp. 206-216 
504 |a Nagao, Y., Yuan, Q.X., Wan, Y.J.Y., French, B., French, S.W., Pathogenesis of Mallory body formation: studies using the drug-primed mouse model (1998) Hepatol. Res., 13, pp. 42-54 
504 |a Nagao, Y., Wan, Y.J.Y., Yuan, Q.X., Kachi, K., Marceau, N., French, S.W., Mouse model of hepatocellular hyperplastic nodule formation characterization of mRNA expression (1999) Hepatol. Res., 15, pp. 110-123 
504 |a Oliva, J., Bardag-Gorce, F., Li, J., French, B.A., Nguyen, S.K., Lu, S.C., French, S.W., Betaine prevents Mallory-Denk body formation in drug-primed mice by epigenetic mechanisms (2009) Exp. Mol. Pathol., 86, pp. 77-86 
504 |a Olson, J.W., Russell, D.H., Prolonged ornithine decarboxylase induction in regenerating carcinogen-treated liver (1980) Cancer Res., 40, pp. 4373-4380 
504 |a Pegg, A.E., Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy (1988) Cancer Res., 48, pp. 759-774 
504 |a Preisegger, K.H., Factor, V.M., Fuchsbichler, A., Stumptner, C., Denk, H., Thorgeirsson, S.S., Atypical ductular proliferation and its inhibition by transforming growth factor beta1 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model for chronic alcoholic liver disease (1999) Lab. Invest., 79, pp. 103-109 
504 |a Salmhofer, H., Rainer, I., Zatloukal, K., Denk, H., Posttranslational events involved in griseofulvin-induced keratin cytoskeleton alterations (1995) Hepatology, 20, pp. 731-740 
504 |a San Martín de Viale, L.C., Drogas y Porfirias (2007) Ind. Química, 357, pp. 26-32 
504 |a San Martín de Viale, L.C., Ríos de Molina, M.D.C., Wainstok de Calmanovici, R., Tomio, J.M., Porphyrins and porphyrinogen carboxy-lyase in hexachlorobenzene-induced porphyria (1977) Biochem. J., 168, pp. 393-400 
504 |a Seiler, N., Raul, F., Polyamines and apoptosis (2005) J. Cell Mol. Med., 9, pp. 623-642 
504 |a Sessa, A., Tunici, P., Perilli, E., Perin, A., Transglutaminase activity in rat liver after acute ethanol administration (1995) Biochim. Biophys. Acta, 1245, pp. 371-375 
504 |a Smith, A.G., De Matteis, F., Drugs and the hepatic porphyrias (1980) Clin. Haematol., 9, pp. 399-425 
504 |a Strnad, P., Harada, M., Siegel, M., Terkeltaub, R.A., Graham, R.M., Khosla, C., Omary, M.B., Transglutaminase 2 regulates mallory body inclusion formation and injury-associated liver enlargement (2007) Gastroenterology, 132, pp. 1515-1526 
504 |a Strnad, P., Siegel, M., Toivola, D.M., Choi, K., Kosek, J.C., Khosla, C., Omary, M.B., Pharmacologic transglutaminase inhibition attenuates drug-primed liver hypertrophy but not Mallory body formation (2006) FEBS Lett., 580, pp. 2351-2357 
504 |a Stumptner, C., Fuchsbichler, A., Lehner, M., Zatloukal, K., Denk, H., Sequence of events in the assembly of Mallory body components in mouse liver: clues to the pathogenesis and significance of Mallory body formation (2001) J. Hepatol., 34, pp. 665-675 
504 |a Stumptner, C., Omary, M.B., Fickert, P., Denk, H., Zatloukal, K., Hepatocyte cytokeratins are hyperphosphorylated at multiple sites in human alcoholic hepatitis and in a Mallory body mouse model (2000) Am. J. Pathol., 156, pp. 77-90 
504 |a Sugimoto, H., Yamada, S., Arai, T., Kobayashi, S., Hamana, K., Matsuzaki, S., Elevation of acetylpolyamine levels in mouse tissues, serum and urine after treatment with radical-producing drugs and lipopolysaccharide (1988) Hepatology, 8, pp. 267-271 
504 |a Tabor, C.W., Tabor, H., Polyamines (1984) Ann. Rev. Biochem., 53, pp. 749-790 
504 |a Tephly, T.R., Coffman, B.L., Ingall, G., Ziet-Har, M.S., Goff, H.M., Tabba, H.D., Smith, K.M., Identification of N-methylprotoporphyrin IX in livers of untreated mice and mice treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine: source of the methyl group (1981) Arch. Biochem. Biophys., 212, pp. 120-126 
504 |a Verderio, E.A., Johnson, T.S., Griffin, M., Transglutaminases in wound healing and inflammation (2005) Prog. Exp. Tumor Res., 38, pp. 89-114 
504 |a Wang, J.Y., Viar, M.J., Johnson, L.R., Regulation of transglutaminase activity by polyamines in the gastrointestinal mucosa of rats (1994) Proc. Soc. Exp. Biol. Med., 205, pp. 20-28 
504 |a Wei, G., DeFeo, K., Hayes, C.S., Woster, P.M., Mandik-Nayak, L., Gilmour, S.K., Elevated ornithine decarboxylase levels activate ataxia telangiectasia mutated-DNA damage signaling in normal keratinocytes (2008) Cancer Res., 68, pp. 2214-2222 
504 |a Yuan, Q.X., Marceau, N., French, B.A., Fu, P., French, S.W., Heat shock in vivo induces Mallory body formation in drug primed mouse liver (1995) Exp. Mol. Pathol., 63, pp. 63-76 
504 |a Zatloukal, K., Denk, H., Spurej, G., Hutter, H., Modulation of protein composition of nuclear lamina. Reduction of lamins B1 and B2 in livers of griseofulvin-treated mice (1992) Lab. Invest., 66, pp. 589-597 
504 |a Zatloukal, K., French, S.W., Stumptner, C., Strnad, P., Harada, M., Toivola, D.M., Cadrin, M., Omary, M.B., From Mallory to Mallory-Denk bodies: what, how and why? (2007) Exp. Cell Res., 313, pp. 2033-2049 
504 |a Zatloukal, K., Stumptner, C., Lehner, M., Denk, H., Baribault, H., Eshkind, L.G., Franke, W.W., Cytokeratin 8 protects from hepatotoxicity, and its ratio to cytokeratin 18 determines the ability of hepatocytes to form Mallory bodies (2000) Am. J. Pathol., 156, pp. 1263-1274 
504 |a Zemskov, E.A., Janiak, A., Hang, J., Waghray, A., Belkin, A.M., The role of tissue transglutaminase in cell-matrix interactions (2006) Front. Biosci., 11, pp. 173-185 
520 3 |a Rodents treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) are a model of two hepatic toxic manifestations: porphyria and the appearance of hepatic cytoplasmic protein aggregates (Mallory-Denk Bodies, MDBs). MDBs are induced after long-term DDC feeding, consist primarily of keratins 8 and 18, and contain glutamine-lysine cross-links generated by transglutaminases (TGs). TGs are Ca2+-dependent enzymes which catalyze the formation of covalent bonds between proteins and between proteins and polyamines. The aim of the current study was to investigate the time-course of TG hepatic activity in CF1 male mice either acutely or chronically treated with DDC and to correlate this activity with polyamine and porphyrin levels. On day 3 of the treatment, statistically significant increases in TG activity (75%), porphyrin content (6740%) and spermidine levels (73%) were observed. Although not statistically significant, at this time point putrescine levels showed an increase of 52%. The highest TG activity was observed on day 30 (522%), while porphyrin levels were still gradually increasing by day 45 (37,000%). From day 7 of the treatment and until the end of the experiment, putrescine levels remained increased (781%). Spermine levels were not affected by the treatment. The DDC-induced increases in putrescine and spermidine levels herein reported seem to be an early event contributing to the stimulation of liver TG activity, and thus to the promotion of cross-linking reactions between keratin proteins. This in turn would contribute to the formation of protein aggregates, which would lead to the appearance of MDBs. Due to the pro-oxidant and antioxidant properties of polyamines, it is possible to speculate that putrescine and spermidine may also participate at several levels in the oxidative stress processes associated with MDB formation. © 2010 Elsevier Ireland Ltd.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: National Council for Scientific Research 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: This work was supported by grants from the National Research Council of Argentina (CONICET) , and the University of Buenos Aires . Dr. L. C. San Martín de Viale is a Scientific Research Career Member of the CONICET. 
593 |a Laboratorio de Disturbios Metabólicos Producidos por Xenobióticos, Su Relación con Salud Humana (DIMXSA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina 
690 1 0 |a 3,5-DIETHOXYCARBONYL-1,4-DIHYDROCOLLIDINE 
690 1 0 |a LIVER 
690 1 0 |a MALLORY-DENK BODIES. 
690 1 0 |a POLYAMINE 
690 1 0 |a PORPHYRIN 
690 1 0 |a TRANSGLUTAMINASE 
690 1 0 |a 1,4 DIHYDRO 2,4,6 TRIMETHYL 3,5 PYRIDINEDICARBOXYLIC ACID DIETHYL ESTER 
690 1 0 |a KERATIN 
690 1 0 |a POLYAMINE 
690 1 0 |a PORPHYRIN 
690 1 0 |a PROTEIN GLUTAMINE GAMMA GLUTAMYLTRANSFERASE 
690 1 0 |a PUTRESCINE 
690 1 0 |a SPERMIDINE 
690 1 0 |a 3,5-DIETHOXYCARBONYL-1,4-DIHYDROCOLLIDINE 
690 1 0 |a POLYAMINE 
690 1 0 |a PORPHYRIN 
690 1 0 |a PROTEIN GLUTAMINE GAMMA GLUTAMYLTRANSFERASE 
690 1 0 |a PYRIDINE DERIVATIVE 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ANIMAL MODEL 
690 1 0 |a ARTICLE 
690 1 0 |a CELL INCLUSION 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a CROSS LINKING 
690 1 0 |a DISEASE MODEL 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a LIVER TOXICITY 
690 1 0 |a MALE 
690 1 0 |a MALLORY DENK BODY 
690 1 0 |a MOUSE 
690 1 0 |a NONHUMAN 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN AGGREGATION 
690 1 0 |a ANIMAL 
690 1 0 |a CELL INCLUSION 
690 1 0 |a DRUG EFFECTS 
690 1 0 |a LIVER 
690 1 0 |a METABOLISM 
690 1 0 |a TOXICITY 
690 1 0 |a ANIMALS 
690 1 0 |a BIOGENIC POLYAMINES 
690 1 0 |a INCLUSION BODIES 
690 1 0 |a LIVER 
690 1 0 |a MALE 
690 1 0 |a MICE 
690 1 0 |a MODELS, ANIMAL 
690 1 0 |a PORPHYRINS 
690 1 0 |a PYRIDINES 
690 1 0 |a TRANSGLUTAMINASES 
690 1 0 |a MUS 
690 1 0 |a RODENTIA 
690 1 0 |a ANIMALS 
690 1 0 |a BIOGENIC POLYAMINES 
690 1 0 |a INCLUSION BODIES 
690 1 0 |a LIVER 
690 1 0 |a MALE 
690 1 0 |a MICE 
690 1 0 |a MODELS, ANIMAL 
690 1 0 |a PORPHYRINS 
690 1 0 |a PYRIDINES 
690 1 0 |a TRANSGLUTAMINASES 
700 1 |a Miño, L.A. 
700 1 |a San Martín de Viale, L.C. 
773 0 |d 2010  |g v. 199  |h pp. 160-165  |k n. 2  |p Toxicol. Lett.  |x 03784274  |w (AR-BaUEN)CENRE-42  |t Toxicology Letters 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77957966716&doi=10.1016%2fj.toxlet.2010.08.018&partnerID=40&md5=86f4cf49a8a86073058384f66a5ef7f5  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.toxlet.2010.08.018  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03784274_v199_n2_p160_Cochon  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784274_v199_n2_p160_Cochon  |y Registro en la Biblioteca Digital 
961 |a paper_03784274_v199_n2_p160_Cochon  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 68444