Primordial magnetic field amplification from turbulent reheating

We analyze the possibility of primordial magnetic field amplification by a stochastic large scale kinematic dynamo during reheating. We consider a charged scalar field minimally coupled to gravity. During inflation this field is assumed to be in its vacuum state. At the transition to reheating the s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Calzetta, E.
Otros Autores: Kandus, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11570caa a22009737a 4500
001 PAPER-7748
003 AR-BaUEN
005 20230518203731.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-78449305095 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Calzetta, E. 
245 1 0 |a Primordial magnetic field amplification from turbulent reheating 
260 |c 2010 
270 1 0 |m Calzetta, E.; Departamento de Física, FCEyN-UBA and IFIBA-CONICET, Cdad. Universitaria, Buenos Aires, Argentina; email: calzetta@df.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Brandenburg, A., Subramanian, K., Astrophysical magnetic fields and nonlinear dynamo theory (2005) Phys. Rept., 417, p. 1. , [astro-ph/0405052] [SPIRES] 
504 |a Calzetta, E.A., Kandus, A., Cosmologial Magnetic Field Amplification Around Z 100, , astro-ph/9901009 [SPIRES] 
504 |a Wolfe, A.M., Jorgenson, R.A., Robishaw, T., Heiles, C., Prochaska, J.X., An 84 microGauss Magnetic Field in a Galaxy at Redshift z=0.692 (2008) Nature, 455, p. 638. , [arXiv:0811.2408] [SPIRES] 
504 |a Bernet, M.L., Miniati, F., Lilly, S.J., Kronberg, P.P., Dessauges-Zavadsky, M., Strong magnetic fields in normal galaxies at high redshifts (2008) Nature, 454, p. 302. , [arXiv: 0807. 3347] [SPIRES] 
504 |a Kronberg, P.P., A global probe of cosmic magnetic fields to high redshifts (2008) Astrophys. J., 676, p. 7079. , [arXiv : 0712.0435] [SPIRES] 
504 |a Hogan, C.J., Magnetohydrodynamic effects of a first-order cosmological phase transition (1983) Phys. Rev. Lett, 51, p. 1488. , [SPIRES] 
504 |a Quashnock, J., Loeb, A., Spergel, D., Magnetic field generation during the cosmological QCD phase transition (1989) Astrophys. J., 344, pp. L49 
504 |a Cheng, B.-L., Olinto, A.V., Primordial magnetic fields generated in the quark - Hadron transition (1994) Phys. Rev., D 50, p. 2421. , [SPIRES] 
504 |a Sigl, G., Olinto, A.V., Jedamzik, K., Primordial magnetic fields from cosmological first order phase transitions (1997) Phys. Rev., D 55, p. 4582. , [astro-ph/9610201] [SPIRES] 
504 |a Grasso, D., Rubinstein, H.R., Magnetic fields in the early universe (2001) Phys. Rept., 348, p. 163. , [astro-ph/0009061] [SPIRES] 
504 |a Widrow, L.M., Origin of galactic and extragalactic magnetic fields (2002) Rev. Mod. Phys., 74, p. 775. , [astro-ph/0207240] [SPIRES] 
504 |a Turner, M.S., Widrow, L.M., Inflation produced, large scale magnetic fields (1988) Phys. Rev., D 37, p. 2743. , [SPIRES] 
504 |a Mazzitelli, F.D., Spedalieri, F.M., Scalar electrodynamics and primordial magnetic fields (1995) Phys. Rev., D 52, p. 6694. , [astro-ph/9505140] [SPIRES] 
504 |a Tsagas, C.G., Kandus, A., Superadiabatic-type magnetic amplification in conventional cosmology (2005) Phys. Rev., D 71, p. 123506. , [astro-ph/0504089] [SPIRES] 
504 |a Kunze, K.E., Primordial magnetic fields and nonlinear electrodynamics (2008) Phys. Rev., D 77, p. 023530. , [arXiv:0710.2435] [SPIRES] 
504 |a Calzetta, E.A., Kandus, A., Mazzitelli, F.D., Primordial magnetic fields induced by cosmological particle creation (1998) Phys. Rev., D 57, p. 7139. , [astro-ph/9707220] [SPIRES] 
504 |a Kandus, A., Calzetta, E.A., Mazzitelli, F.D., Wagner, C.E.M., Cosmological magnetic fields from gauge mediated supersymmetry-breaking models (2000) Phys. Lett., B 472, p. 287. , [hep-ph/9908524] [SPIRES] 
504 |a Giovannini, M., Shaposhnikov, M.E., (2000) Primordial Magnetic Fields from Inflation?, Phys. Rev., 62, p. 103512. , [hep-ph/0004269][SPIRES] 
504 |a Calzetta, E.A., Kandus, A., (2002) Self Consistent Estimates of Magnetic Fields from Reheating, Phys. Rev., 65, p. 063004. , [astro-ph/0110341][SPIRES] 
504 |a Maroto, A.L., (2001) Primordial Magnetic Fields from Metric Perturbations, Phys. Rev., 64, p. 083006. , [hep-ph/0008288][SPIRES] 
504 |a Calzetta, E., Hu, B.-L., (2008) Nonequilibrium Quantum Field Theory, , Cambridge University Press, Cambridge U.K 
504 |a Khlebnikov, S.Y., Tkachev, I.I., Classical decay of inflaton (1996) Phys. Rev. Lett., 77, p. 219. , [hep-ph/9603378][SPIRES] 
504 |a Khlebnikov, S.Y., Tkachev, I.I., (1997) Relic Gravitational Waves Produced after Preheating, Phys. Rev., 56, p. 653. , [hep-ph/9701423][SPIRES] 
504 |a Kofman, L., Linde, A.D., Starobinsky, A.A., (1996) Non-thermal Phase Transitions after Inflation, Phys. Rev. Lett., 76, p. 1011. , [hep-th/9510119][SPIRES] 
504 |a Kofman, L., Linde, A.D., Starobinsky, A.A., Towards the theory of reheating after inflation (1997) Phys. Rev., D 56, p. 3258. , [hep-ph/9704452] [SPIRES] 
504 |a Finelli, F., Brandenberger, R.H., Parametric amplification of gravitational fluctuations during reheating (1999) Phys. Rev. Lett., 82, p. 1362. , [hep-ph/9809490] [SPIRES] 
504 |a Finelli, F., Brandenberger, R.H., Parametric amplification of metric fluctuations during reheating in two field models (2000) Phys. Rev., D 62, p. 083502. , [hep-ph/0003172] [SPIRES] 
504 |a Felder, G.N., Tkachev, I., LATTICEEASY: A program for lattice simulations of scalar fields in an expanding universe (2008) Comput. Phys. Commun., 178. , [hep-ph/0011159] [SPIRES] 
504 |a Felder, G.N., Dynamics of symmetry breaking and tachyonic preheating (2001) Phys. Rev. Lett., 87, p. 011601. , [hep-ph/0012142] [SPIRES] 
504 |a Felder, G.N., Kofman, L., The development of equilibrium after preheating (2001) Phys. Rev., D 63, p. 103503. , [hep-ph/0011160] [SPIRES] 
504 |a Grana, M., Calzetta, E., Reheating and turbulence (2002) Phys. Rev., D 65, p. 063522. , [hep-ph/0110244] [SPIRES] 
504 |a Jedamzik, K., Lemoine, M., Martin, J., Generation of gravitational waves during early structure formation between cosmic inflation and reheating (2010) JCAP, 4, p. 021. , [arXiv:1002.3278] [SPIRES] 
504 |a Finelli, F., Gruppuso, A., Resonant amplification of gauge fields in expanding universe (2001) Phys. Lett, B 502, p. 216. , [hep-ph/0001231] [SPIRES] 
504 |a Bassett, B.A., Pollifrone, G., Tsujikawa, S., Viniegra, F., Preheating as cosmic magnetic dynamo (2001) Phys. Rev., D 63, p. 103515. , [astro-ph/0010628] [SPIRES] 
504 |a Moffatt, H.K., (1983) Magnetic Field Generation in Electrically Conducting Fluids, , Cambridge University Press, Cambridge U.K. 1st paperback edition 
504 |a Mininni, P.D., Gomez, D.O., Mahajan, S.M., Dynamo action in magnetohydrodynamics and hall-magnetohydrodynamics (2003) Astrophys. J., 587, p. 472 
504 |a Mininni, P., Highly turbulent solutions of the Lagrangian-averaged Navier-Stokes a model and their large-eddy-simulation potential (2007) Phys. Rev., E 76, p. 026316 
504 |a Birrel, N.D., Davies, P.C.W., (1994) Quantum Fields in Curved Space, , Cambridge University Press, Cambridge U.K 
504 |a Mukhanov, V., Winitzki, S., (2007) Introduction to Quantum Effects in Gravity, , Cambridge University Press, Cambridge U.K 
504 |a Parker, L., Toms, D., (2009) Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity, , Cambridge University Press, Cambridge U.K 
504 |a Lesieur, M., (1990) Turbulence in Fluids, , Kluwer Academic Pub., Dordrecht The Netherlands 
504 |a Brandenburg, A., Bigazzi, A., Subramanian, K., The helicity constraint in turbulent dynamos with shear (2001) Mon. Not. Roy. Astron. Soc., 325, p. 685. , [astro-ph/0011081] [SPIRES] 
504 |a Mininni, P.D., Gomez, D.O., Mahajan, S.M., Direct simulations of helical Hall-MHD turbulence and dynamo action (2005) Astrophys. J., 619, p. 1019. , [astro-ph/0410274] [SPIRES] 
504 |a Allen, B., Vacuum states in de Sitter space (1985) Phys. Rev., D 32, p. 3136. , [SPIRES] 
504 |a Kovtun, P., Son, D.T., Starinets, A.O., Viscosity in strongly interacting quantum, field theories from black hole physics (2005) Phys. Rev. Lett., 94, p. 111601. , [hep-th/0405231] [SPIRES] 
504 |a Luzum, M., Romatschke, P., Viscous hydrodynamic predictions for nuclear collisions at the LHC (2009) Phys. Rev. Lett., 103, p. 262302. , [arXiv:0901.4588] [SPIRES] 
504 |a Raedler, K.-H., Rheinhardt, M., Mean-field Electrodynamics: Critical Analysis of Various Analytical Approaches, , astro-ph/0606267 [SPIRES] 
504 |a McComb, W.D., (1990) The Physics of Fluid Turbulence, , Oxford University Press, Oxford U.K 
504 |a Kolb, E.W., Turner, M.S., (1990) The Early Universe, , Addison-Wesley, Reading U.S.A 
504 |a Starobinsky, A.A., A new type of isotropic cosmological models without singularity (1980) Phys. Lett., B 91, p. 99. , [SPIRES] 
504 |a Zaballa, I., Sasaki, M., Boosted Perturbations at the End of Inflation, , arXiv:0911.2069 [SPIRES] 
504 |a Monin, A.S., Yaglom, A.M., (2007) Statistical Fluid Mechanics: Mechanics of Turbulence., 2. , Dover eds., New York U.S.A 
504 |a Tomita, K., Nariai, H., Satö, H., Matsuda, T., Takeda, H., On the dissipation of primordial turbulence in the expanding universe (1970) Prog. Theor. Phys., 43, p. 1511 
504 |a Itzykson, C., Zuber, J.B., (2005) Quantum Field Theory, , Dover eds., New York U.S.A 
520 3 |a We analyze the possibility of primordial magnetic field amplification by a stochastic large scale kinematic dynamo during reheating. We consider a charged scalar field minimally coupled to gravity. During inflation this field is assumed to be in its vacuum state. At the transition to reheating the state of the field changes to a many particle/anti-particle state. We characterize that state as a fluid flow of zero mean velocity but with a stochastic velocity field. We compute the scale-dependent Reynolds number Re(k), and the characteristic times for decay of turbulence, td and pair annihilation ta, finding ta ≪ td. We calculate the rms value of the kinetic helicity of the flow over a scale Γ and show that it does not vanish. We use this result to estimate the amplification factor of a seed field from the stochastic kinematic dynamo equations. Although this effect is weak, it shows that the evolution of the cosmic magnetic field from reheating to galaxy formation may well be more complex than as dictated by simple flux freezing. © 2010 IOP Publishing Ltd and SISSA.  |l eng 
593 |a Departamento de Física, FCEyN-UBA and IFIBA-CONICET, Cdad. Universitaria, Buenos Aires, Argentina 
593 |a LATO - DCET - UESC, Rodovia Ilhéus-Itabuna, km 16 s/n, CEP: 45662-900, Salobrinho, Ilhéus-BA, Brazil 
690 1 0 |a COSMIC MAGNETIC FIELDS THEORY 
690 1 0 |a MAGNETOHYDRODYNAMICS 
700 1 |a Kandus, A. 
773 0 |d 2010  |g v. 2010  |k n. 8  |p J. Cosmol. Astroparticle Phys.  |x 14757516  |w (AR-BaUEN)CENRE-5511  |t Journal of Cosmology and Astroparticle Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-78449305095&doi=10.1088%2f1475-7516%2f2010%2f08%2f007&partnerID=40&md5=b6dfd31f9382813824e57cf1bbd77e5a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1088/1475-7516/2010/08/007  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_14757516_v2010_n8_p_Calzetta  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14757516_v2010_n8_p_Calzetta  |y Registro en la Biblioteca Digital 
961 |a paper_14757516_v2010_n8_p_Calzetta  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 68701