Vortex formation in a two-dimensional Bose gas

We discuss the stability of a homogeneous two-dimensional Bose gas at finite temperature against the formation of isolated vortices. We consider a patch of several healing lengths in size and compute its free energy using the Euclidean formalism. Since we deal with an open system, which is able to e...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Calzetta, E.
Otros Autores: Ho, K.-Y, Hu, B.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11869caa a22012377a 4500
001 PAPER-7902
003 AR-BaUEN
005 20230518203741.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77951646850 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JPAPE 
100 1 |a Calzetta, E. 
245 1 0 |a Vortex formation in a two-dimensional Bose gas 
260 |c 2010 
270 1 0 |m Calzetta, E.; Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-Ciudad Universitaria, 1428 Buenos Aires, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Mermin, N.D., Wagner, H., Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models (1966) Phys. Rev. Lett., 17, p. 1133 
504 |a Hohenberg, P.C., Existence of long-range order in one and two dimensions (1967) Phys. Rev., 158, p. 383 
504 |a Coleman, S., There are no Goldstone bosons in two dimensions (1973) Commun. Math. Phys., 31, p. 259 
504 |a Berezinskii, V.L., Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group: I. Classical systems (1971) Sov. Phys.-JETP, 32, p. 493 
504 |a Kosterlitz, J.M., Thouless, D.J., Ordering, metastability and phase transitions in two-dimensional systems (1973) J. Phys. C: Solid State Phys., 6, p. 1181 
504 |a Al Khawaja, U., Andersen, J.O., Proukakis, N.P., Stoof, H.T.C., Low-dimensional Bose gases (2002) Phys. Rev. A, 66, p. 013615 
504 |a How, P.-T., Leclair, A., Critical point of the two-dimensional Bose gas: An S-matrix approach (2010) Nucl. Phys., 824, p. 415 
504 |a Gräter, M., Wetterich, C., Kosterlitz-Thouless phase transition in the two-dimensional linear σ model (1995) Phys. Rev. Lett., 75, p. 378 
504 |a Gersdorff, G.V., Wetterich, C., Nonperturbative renormalization flow and essential scaling for the Kosterlitz-Thouless transition (2001) Physical Review B - Condensed Matter and Materials Physics, 64 (5), pp. 0545131-0545135. , 054513 
504 |a Floerchinger, S., Wetterich, C., Superfluid Bose gas in two dimensions (2009) Phys. Rev. A, 79, p. 013601 
504 |a Popov, V.N., Quantum vortices and phase transitions in Bose systems (1973) Sov. Phys.-JETP, 37, p. 341 
504 |a Popov, V.N., (1987) Functional Integrals and Collective Excitations, , (Cambridge: Cambridge University Press) chapter 8 
504 |a Chu, H.-C., Williams, G.A., Quenched Kosterlitz-Thouless superfluid transition (2000) Phys. Rev. Lett., 86, p. 2585 
504 |a Arovas, D.P., Auerbach, A., Quantum tunneling of vortices in two-dimensional superfluids (2008) Phys. Rev. B, 78, p. 094508 
504 |a Lindner, N.H., Auerbach, A., Arovas, D.P., Vortex quantum dynamics of two-dimensional lattice bosons (2008) Phys. Rev. Lett., 102, p. 070403 
504 |a Joseph Wang, C.-C., Duine, R.A., MacDonald, A.H., Quantum vortex dynamics in two-dimensional neutral superfluids (2010) Phys. Rev. A, 81, p. 013609 
504 |a Gross, E.P., Hydrodynamics of a superfluid condensate (1963) J. Math. Phys., 4, p. 195 
504 |a Ginzburg, V.L., Pitaevskii, L.P., On the theory of superfluidity (1958) Sov. Phys.-JETP, 34, p. 858 
504 |a Pu, H., Law, C.K., Eberly, J.H., Bigelow, N.P., Coherent disintegration and stability of vortices in trapped Bose condensates (1999) Physical Review A - Atomic, Molecular, and Optical Physics, 59 (2-3), pp. 1533-1537 
504 |a Prokof'Ev, N., Ruebenacker, O., Svistunov, B., Critical point of a weakly interacting two-dimensional Bose gas (2001) Physical Review Letters, 87 (1-27), pp. 2704021-2704024. , 270402 
504 |a Prokof'Ev, N., Svistunov, B., Two-dimensional weakly interacting Bose gas in the fluctuation region (2002) Phys. Rev. A, 66, p. 043608 
504 |a Davis, M.J., Morgan, S.A., Burnett, K., Simulations of thermal Bose fields in the classical limit (2002) Phys. Rev. A, 66, p. 053618 
504 |a Hutchinson, D.A.W., Blakie, P.B., Phase transitions in ultra-cold two-dimensional Bose gases (2006) Int. J. Mod. Phys., 20 (30-31), p. 5224 
504 |a Simula, T.P., Blakie, P.B., Thermal activation of vortex-antivortex pairs in quasi-two-dimensional Bose-Einstein condensates (2006) Phys. Rev. Lett., 96, p. 020404 
504 |a Shumayer, D., Hutchinsin, D.A.W., Thermodynamically activated vortex-dipole formation in a two-dimensional Bose-Einstein condensate (2007) Phys. Rev. A, 75, p. 015601 
504 |a Simula, T.P., Davis, M.J., Blakie, P.B., Superfluidity of an interacting trapped quasi-two-dimensional Bose gas (2008) Phys. Rev. A, 77, p. 023618 
504 |a Holzmann, M., Chevallier, M., Krauth, W., Semiclassical theory of the quasi-two-dimensional trapped Bose gas (2008) Europhys. Lett., 82, p. 30001 
504 |a Bisset, R.N., Baillie, D., Blakie, P.B., Analysis of the Holzmann-Chevallier-Krauth theory for the trapped quasi-two-dimensional Bose gas (2009) Phys. Rev. A, 79, p. 013602 
504 |a Bisset, R.N., Davis, M.J., Simula, T.P., Blakie, P.B., Quasi-condensation and coherence in the quasi-two-dimensional trapped Bose gas (2009) Phys. Rev. A, 79, p. 033626 
504 |a Bisset, R.N., Blakie, P.B., Quantitative test of the mean-field description of a trapped two-dimensional Bose gas (2009) Phys. Rev. A, 80, p. 045603 
504 |a Bisset, R.N., Blakie, P.B., Transition region properties of a trapped quasi-two-dimensional degenerate Bose gas (2009) Phys. Rev. A, 80, p. 035602 
504 |a Hadzibabic, Z., Krüger, P., Cheneau, M., Battelier, B., Dalibard, J., Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas (2007) Nature, 441, p. 1118 
504 |a Krüger, P., Hadzibabic, Z., Dalibard, J., Critical point of an interacting two-dimensional atomic Bose gas (2007) Phys. Rev. Lett., 99, p. 040402 
504 |a Cladé, P., Ryu, C., Ramanathan, A., Helmerson, K., Phillips, W.D., Observation of a 2D Bose gas: From thermal to quasi-condensate to superfluid (2009) Phys. Rev. Lett., 102, p. 170401 
504 |a Calzetta, E., Hu, B.-L., (2008) Nonequilibrium Quantum Field Theory, , (Cambridge: Cambridge University Press) chapter 13.3 
504 |a Rubakov, V., (2002) Classical Theory of Gauge Fields, , (Princeton, NJ: Princeton University Press) 
504 |a Langer, J.S., Theory of nucleation rates (1968) Phys. Rev. Lett., 21, p. 973 
504 |a Langer, J.S., Statistical theory of the decay of metastable states (1969) Ann. Phys., 54, p. 258 
504 |a Coleman, S., Fate of the false vacuum: Semiclassical theory (1977) Phys. Rev. D, 15, p. 2929 
504 |a Callan, C.G., Coleman, S., Fate of the false vacuum: II. First quantum corrections (1977) Phys. Rev. D, 16, p. 1762 
504 |a Coleman, S., (1985) Aspects of Symmetry, , (Cambridge: Cambridge University Press) chapter 7 
504 |a Affleck, I.K., De Luccia, F., Induced vacuum decay (1979) Phys. Rev. D, 20, p. 3168 
504 |a Affleck, I., Quantum-statistical metastability (1981) Phys. Rev. Lett., 46, p. 388 
504 |a Haldane, F.D.M., Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids (1981) Phys. Rev. Lett., 47, p. 1840 
504 |a Calzetta, E., Hu, B.L., Rey, A.M., Bose-Einstein-condensate superfluid-Mott-insulator transition in an optical lattice (2006) Phys. Rev. A, 73, p. 023610 
504 |a Hadzibabic, Z., Dalibard, J., (2009) Two-dimensional Bose Fluids: An Atomic Physics Perspective 
504 |a Lifshitz, L.M., Pitaevskii, L.P., (1990) Statistical Physics, Part 2, 9. , (Course of Theoretical Physics) (Oxford: Pergamon) chapter 30 
504 |a Barnett, R., Chen, E., Refael, G., Vortex synchronization in Bose-Einstein condensates: A time-dependent Gross-Pitaevskii equation approach (2010) New J. Phys., 13, p. 043004 
504 |a Altland, A., Simons, B., (2006) Condensed Matter Field Theory, , (Cambridge: Cambridge University Press) chapter 9 
504 |a Negele, J.W., Orland, H., (1998) Quantum Many-Particle Systems 
504 |a Feynman, R.P., (1972) Statistical Mechanics, , (Reading, MA: Addison-Wesley) chapter 3 
504 |a Rajaraman, R., (1987) Solitons and Instantons, , (New York: Elsevier) chapter 10 
504 |a Gelfand, I.M., Yaglom, A.M., Integration in functional spaces and its applications in quantum physics (1960) J. Math. Phys., 1, p. 48 
504 |a Dunne, G.V., Functional determinants in quantum field theory (2008) J. Phys. A: Math. Theor., 41, p. 304006 
504 |a Holzmann, M., Krauth, W., Kosterlitz-Thouless transition of the quasi two-dimensional trapped Bose gas (2008) Phys. Rev. Lett., 100, p. 190402 
520 3 |a We discuss the stability of a homogeneous two-dimensional Bose gas at finite temperature against the formation of isolated vortices. We consider a patch of several healing lengths in size and compute its free energy using the Euclidean formalism. Since we deal with an open system, which is able to exchange particles and angular momentum with the rest of the condensate, we use the symmetry-breaking (as opposed to the particle number conserving) formalism, and include configurations with all values of angular momenta in the partition function. At finite temperature, there appear sphaleron configurations associated with isolated vortices. The contribution from these configurations to the free energy is computed in the dilute gas approximation. We show that the Euclidean action of linearized perturbations of a vortex is not positive definite. As a consequence the free energy of the 2D Bose gas acquires an imaginary part. This signals the instability of the gas. This instability may be identified with the Berezinskii-Kosterlitz-Thouless transition. © 2010 IOP Publishing Ltd.  |l eng 
593 |a Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-Ciudad Universitaria, 1428 Buenos Aires, Argentina 
593 |a Institute of Physical Sciences and Technology, Department of Physics, University of Maryland, College Park, MD 20742-4111, United States 
593 |a Joint Quantum Institute and Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742-4111, United States 
690 1 0 |a BEREZINSKII-KOSTERLITZ-THOULESS TRANSITION 
690 1 0 |a BOSE GAS 
690 1 0 |a DILUTE GAS 
690 1 0 |a EUCLIDEAN 
690 1 0 |a FINITE TEMPERATURES 
690 1 0 |a IMAGINARY PARTS 
690 1 0 |a PARTICLE NUMBERS 
690 1 0 |a PARTITION FUNCTIONS 
690 1 0 |a POSITIVE DEFINITE 
690 1 0 |a SYMMETRY-BREAKING 
690 1 0 |a VORTEX FORMATION 
690 1 0 |a ANGULAR MOMENTUM 
690 1 0 |a BOSONS 
690 1 0 |a ELECTRON ENERGY ANALYZERS 
690 1 0 |a FREE ENERGY 
690 1 0 |a OPEN SYSTEMS 
690 1 0 |a TWO DIMENSIONAL 
690 1 0 |a VORTEX FLOW 
650 1 7 |2 spines  |a GASES 
700 1 |a Ho, K.-Y. 
700 1 |a Hu, B.L. 
773 0 |d 2010  |g v. 43  |k n. 9  |p J Phys B At Mol Opt Phys  |x 09534075  |w (AR-BaUEN)CENRE-332  |t Journal of Physics B: Atomic, Molecular and Optical Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77951646850&doi=10.1088%2f0953-4075%2f43%2f9%2f095004&partnerID=40&md5=b81e18e7853321c3392d7a83d2bada96  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1088/0953-4075/43/9/095004  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09534075_v43_n9_p_Calzetta  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09534075_v43_n9_p_Calzetta  |y Registro en la Biblioteca Digital 
961 |a paper_09534075_v43_n9_p_Calzetta  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 68855