Chelating electrodes as taste sensor for the trace assessment of metal ions

Impedance spectroscopy combined with principal component analysis allows the trace detection of metal ions. The detection system is based on two modified electrodes, each of them containing a chelating agent (pyrocatechol violet and a nitrilotriacetic derivative); as the chelator is able to capture...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Yánez Heras, J.
Otros Autores: Rodriguez, S.D, Negri, R.M, Battaglini, Fernando
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09390caa a22010697a 4500
001 PAPER-8016
003 AR-BaUEN
005 20241007094932.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77949276313 
030 |a SABCE 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Yánez Heras, J. 
245 1 0 |a Chelating electrodes as taste sensor for the trace assessment of metal ions 
260 |c 2010 
270 1 0 |m Battaglini, F.; INQUIMAE - Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2, C1428EHA Buenos Aires, Argentina; email: battagli@qi.fcen.uba.ar 
504 |a Shcherbatykh, I., Carpenter, D.O., The role of metals in the etiology of Alzheimer's disease (2007) J. Alzheimer's Dis., 11, pp. 191-205 
504 |a Flaten, T.P., Aluminium as a risk factor in Alzheimer's disease, with emphasis on drinking water (2001) Brain Res. Bull., 55, pp. 187-196 
504 |a Secondary Drinking Water Regulations: Guidance for Nuisance Chemicals EPA 810/K-92-001, , http://www.epa.gov/safewater/consumer/2ndstandards.html, July 1992 
504 |a (1992) Handbook of Organic Analytical Reagents. 2nd ed., , Ueno K., Imamura T., and Cheng K.L. (Eds), CRC, Boca Raton, Florida 
504 |a Chaberek, S., Martell, A.E., (1959) Organic Sequestering Agents, , Wiley, New York 
504 |a Kolthoff, I.M., Sandell, E.B., Meehan, E.J., Bukenstein, S., (1969) Quantitative Chemical Analysis. 4th ed., , The Macmillan Company, Toronto, Canada 
504 |a Palacios, M.A., Wang, Z., Montes, V.A., Zyryanov, G.V., Anzenbacher Jr., P., Rational design of a minimal size sensor array for metal ion detection (2008) J. Am. Chem. Soc., 130, pp. 10307-10314 
504 |a Rodriguez, M.C., Kawde, A.-N., Wang, J., Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge (2005) Chem. Commun., pp. 4267-4269 
504 |a Katz, E., Willner, I., Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors (2003) Electroanalysis, 15, pp. 913-947 
504 |a Yang, L.-M.C., Diaz, J.E., McIntire, T.M., Weiss, G.A., Penner, R.M., Direct electrical transduction of antibody binding to a covalent virus layer using electrochemical impedance (2008) Anal. Chem., 80, pp. 5695-5705 
504 |a Pioggia, G., Di Francesco, F., Marchetti, A., Ferro, M., Leardi, R., Ahluwalia, A., A composite sensor array impedentiometric electronic tongue: Part I. Characterization (2007) Biosens. Bioelectron., 22, pp. 2618-2623 
504 |a Ferreira, M., Riul Jr., A., Wohnrath, K., Fonseca, F.J., Oliveira Jr., O.N., Mattoso, L.H.C., High-performance taste sensor made from Langmuir-Blodgett films of conducting polymers and a ruthenium complex (2003) Anal. Chem., 75, pp. 953-955 
504 |a Priano, G., Gonzalez, G., Günther, M., Battaglini, F., Disposable gold electrode array for simultaneous electrochemical studies (2008) Electroanalysis, 20, pp. 91-97 
504 |a Johnson, R.A., Wichern, D.W., (2002) Applied Multivariate Statistical Analysis, , Prentice Hall, New Jersey 
504 |a Struyf, A., Hubert, M., Rousseeuw, P.J., Integrating robust clustering techniques in S-PLUS (1997) Comput. Stat. Data Anal., 26, pp. 17-37 
504 |a Kaufman, L., Rousseeuw, P.J., Statistical data analysis based on the L1 norm (1987) Clustering by Means of Medoids, pp. 405-416. , Dodge Y. (Ed), North-Holland, Amsterdam 
504 |a Scott, S.M., James, D., Ali, Z., Data analysis for electronic nose systems (2006) Microchim. Acta, 156, pp. 183-207 
504 |a Berrueta, L.A., Alonso-Salces, R.M., Héberger, K., Supervised pattern recognition in food analysis (2007) J. Chromatogr. A, 1158, pp. 196-214 
504 |a Cai, C.-X., Yin, L.-H., Xue, K.-H., Electrocatalysis of NADH oxidation at a glassy carbon electrode modified with pyrocatechol sulfonephthalein (2000) J. Mol. Catal. A: Chem., 152, pp. 179-186 
504 |a Yánez-Heras, J., Forte-Giacobone, A.F., Battaglini, F., Ascorbate amperometric determination using conducting copolymers from aniline and N-(3-propane sulfonic acid)aniline (2007) Talanta, 71, pp. 1684-1688 
504 |a Kocjan, R., Garbacka, M., Additional purification of alkali or alkaline earth salts by using silica gel modified with pyrocatechol violet as a sorbent (1994) Talanta, 41, pp. 131-133 
506 |2 openaire  |e Política editorial 
520 3 |a Impedance spectroscopy combined with principal component analysis allows the trace detection of metal ions. The detection system is based on two modified electrodes, each of them containing a chelating agent (pyrocatechol violet and a nitrilotriacetic derivative); as the chelator is able to capture the metal ion at very low concentrations, important electrical changes are produced on the surface environment, generating patterns with different features for each ion. The system is able to differentiate eight metal ions (Al3+, Fe3+, Cd2+, Pb2+, Hg2+, Cu2+, Ca2+ and Ag+) at micromolar levels in ultrapure water. The method allows the detection of metal ions in aqueous samples without the need of sample conditioning, rinsing steps or the addition of probes. Selecting the appropriate frequencies and sensors, the array can also be applied to different aqueous systems such as bottled mineral water or concentrated NaCl (27%) yielding similar results. © 2010 Elsevier B.V. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 00575 
536 |a Detalles de la financiación: Universidad de Buenos Aires and ANPCyT (PICT 00575) are acknowledged for financial support. FB and RMN are research staff members of CONICET. JYH and SDR are recipients of CONICET fellowships. Jorge Yánez Heras is a graduate student at Universidad de Buenos Aires. He received his BcS degree in chemistry from Universidad Central de Venezuela in 2004. Silvio D. Rodríguez is a graduate student at Universidad de Buenos Aires. He received his BcS degree in Food Technology from Universidad Nacional de Quilmes in 2006. R. Martín Negri is an assistant professor at Universidad de Buenos Aires and research staff of the Argentina Research Council (CONICET). He received his PhD from Universidad de Buenos Aires in 1991. His research interests are chemical sensors and sensor's arrays (electronic noses-tongues), multivariate data analysis and material science. Fernando Battaglini is an associate professor at Universidad de Buenos Aires and research staff of the Argentina Research Council (CONICET). He received his PhD from Universidad de Buenos Aires in 1991. His research interests are biosensors, electrochemistry and materials science. 
593 |a INQUIMAE - Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2, C1428EHA Buenos Aires, Argentina 
690 1 0 |a CHELATING ELECTRODE 
690 1 0 |a ELECTRONIC TONGUE 
690 1 0 |a IMPEDANCE 
690 1 0 |a PRINCIPAL COMPONENT ANALYSIS 
690 1 0 |a TRACE METAL DETECTION 
690 1 0 |a AQUEOUS SAMPLES 
690 1 0 |a AQUEOUS SYSTEM 
690 1 0 |a CHELATING AGENT 
690 1 0 |a DETECTION SYSTEM 
690 1 0 |a ELECTRONIC TONGUE 
690 1 0 |a IMPEDANCE SPECTROSCOPY 
690 1 0 |a LOW CONCENTRATIONS 
690 1 0 |a MICROMOLAR LEVEL 
690 1 0 |a MINERAL WATER 
690 1 0 |a MODIFIED ELECTRODES 
690 1 0 |a PYROCATECHOL VIOLET 
690 1 0 |a SURFACE ENVIRONMENTS 
690 1 0 |a TASTE SENSOR 
690 1 0 |a TRACE DETECTION 
690 1 0 |a TRACE METAL 
690 1 0 |a ULTRA-PURE WATER 
690 1 0 |a BEVERAGES 
690 1 0 |a CALCIUM 
690 1 0 |a CHELATION 
690 1 0 |a ELECTRODES 
690 1 0 |a ELECTRONIC TONGUES 
690 1 0 |a LEAD 
690 1 0 |a MERCURY (METAL) 
690 1 0 |a METAL ANALYSIS 
690 1 0 |a METAL DETECTORS 
690 1 0 |a METAL IONS 
690 1 0 |a METALS 
690 1 0 |a SENSORS 
690 1 0 |a SODIUM CHLORIDE 
690 1 0 |a TRACE ANALYSIS 
690 1 0 |a TRACE ELEMENTS 
690 1 0 |a WATER 
690 1 0 |a PRINCIPAL COMPONENT ANALYSIS 
700 1 |a Rodriguez, S.D. 
700 1 |a Negri, R.M. 
700 1 |a Battaglini, Fernando 
773 0 |d 2010  |g v. 145  |h pp. 726-733  |k n. 2  |p Sens Actuators, B Chem  |x 09254005  |w (AR-BaUEN)CENRE-6816  |t Sensors and Actuators, B: Chemical 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77949276313&doi=10.1016%2fj.snb.2010.01.027&partnerID=40&md5=eef29becd526347cf27b0c622a9bfa03  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.snb.2010.01.027  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09254005_v145_n2_p726_YanezHeras  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09254005_v145_n2_p726_YanezHeras  |y Registro en la Biblioteca Digital 
961 |a paper_09254005_v145_n2_p726_YanezHeras  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 68969