Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: Modeling for its applications in biomolecule detection

We report the numerical simulation of an electrochemical system compromising a mesoporous material placed at a close distance of a working electrode. The effect of mesoscopic domains to the amperometric response of an electroactive species by applying a cyclic voltammetry is simulated to establish t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: González, G.
Otros Autores: Priano, G., Günther, M., Battaglini, Fernando
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:We report the numerical simulation of an electrochemical system compromising a mesoporous material placed at a close distance of a working electrode. The effect of mesoscopic domains to the amperometric response of an electroactive species by applying a cyclic voltammetry is simulated to establish the influence of different parameters on the sensitivity of this system to detect molecules able to block the pores. Alumina membranes were chosen as mesoporous material; they were modified with anti-horseradish peroxidase as model system to test the behavior predicted by the simulation. The label-free assembled electrochemical system shows a reproducible behavior and it is able to detect a 10 nM protein concentration. © 2008 Elsevier B.V. All rights reserved.
Bibliografía:Link, J.R., Sailor, M.J., Smart dust: self-assembling, self-orienting photonic crystals of porous Si (2003) PNAS, 100, pp. 10607-10610
Anderson, R.C., Muller, R.S., Tobias, C.W., Investigations of porous silicon for vapor sensing (1990) Sens. Actuators A: Phys., 23, pp. 835-839
Ben-Chorin, M., Kux, A., Adsorbate effects on photoluminescence and electrical conductivity of porous silicon (1994) Appl. Phys. Lett., 64, pp. 481-483
Lahuerhaas, J.M., Sailor, M.J., Chemical modification of the photoluminescence quenching of porous silicon (1993) Science, 261, pp. 1567-1568
Chan, S., Horner, S., Fauchet, P., Miller, B.L., Identification of gram negative bacteria using nanoscale silicon microcavities (2001) J. Am. Chem. Soc., 123, pp. 11797-11798
Vlassiouk, I., Takmakov, P., Smirnov, S., Sensing DNA hybridization via ionic conductance through a nanoporous electrode (2005) Langmuir, 21, pp. 4776-4778
Bayley, H., Martin, C.R., Resistive-pulse sensings from microbes to molecules (2000) Chem. Rev., 100, pp. 2575-2594
Nozawa, K., Osono, C., Sugawara, M., Biotinylated MCM-41 channels as a sensing element in planar bilayer lipid membranes (2007) Sens. Actuators B: Chem., 126, pp. 632-640
Mortari, A., Maaroof, A., Martin, D., Cortie, M.B., Mesoporous gold electrodes for sensors based on electrochemical double layer capacitance (2007) Sens. Actuators B: Chem., 123, pp. 262-268
Siwy, Z., Trofin, L., Kohli, P., Baker, L.A., Trautmann, C., Martin, C.R., Protein biosensors based on biofunctionalized conical gold nanotubes (2005) J. Am. Chem. Soc., 127, pp. 5000-5001
Uram, J.D., Ke, K., Hunt, A.J., Mayer, M., Label-free affinity assays by rapid detection of immune complexes in submicrometer pores (2006) Angew. Chem. Int. Ed., 45, pp. 2281-2285
Ito, T., Sun, L., Henriquez, R.R., Crooks, R.M., A carbon nanotube-based Coulter nanoparticle counter (2004) Acc. Chem. Res., 37, pp. 937-945
Zhang, B., Zhang, Y.H., White, H.S., The nanopore electrode (2004) Anal. Chem., 76, pp. 6229-6238
Kumar, S.K., Hong, J.-D., Photoresponsive ion gating function of an azobenzene polyelectrolyte multilayer spin-self-assembled on a nanoporous support (2008) Langmuir, 24, pp. 4190-4193
Hong, S.U., Bruening, M.L., Separation of amino acid mixtures using multilayer polyelectrolyte nanofiltration membranes (2006) J. Membr. Sci., 280, pp. 1-5
Newman, J., Thomas-Alyea, K., (2004) Electrochemical Systems - Chapter 11. 3rd ed., , John Wiley & Sons
Zhang, Y.H., Zhang, B., White, H.S., Electrochemistry of nanopore electrodes in low ionic strength solutions (2006) J. Phys. Chem. B, 110, pp. 1768-1774
Lee, S., Zhang, Y., White, H.S., Harrell, C.C., Martin, C.R., Electrophoretic capture and detection of nanoparticles at the opening of a membrane pore using scanning electrochemical microscopy (2004) Anal. Chem., 76, pp. 6108-6115
Bard, A.J., Faulkner, L.R., (2001) Electrochemical Methods. 2nd ed., , Wiley, New York Chapter 6, pp. 236-239
Berglund, G.I., Carlsson, G.H., Smith, A.T., Szoke, H., Henriksen, A., Hajdu, J., The catalytic pathway of horseradish peroxidase at high resolution (2002) Nature, 417, pp. 463-468
Demirel, G., Çaykara, T., Akaoglu, B., Çakmak, M., Construction of a novel multilayer system and its use for oriented immobilization of immunoglobulin G (2007) Surf. Sci., 601, pp. 4563-4570
ISSN:09254005
DOI:10.1016/j.snb.2008.11.006