Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: Modeling for its applications in biomolecule detection
We report the numerical simulation of an electrochemical system compromising a mesoporous material placed at a close distance of a working electrode. The effect of mesoscopic domains to the amperometric response of an electroactive species by applying a cyclic voltammetry is simulated to establish t...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | , , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
2010
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 09044caa a22009617a 4500 | ||
---|---|---|---|
001 | PAPER-8081 | ||
003 | AR-BaUEN | ||
005 | 20241007095002.0 | ||
008 | 190411s2010 xx ||||fo|||| 00| 0 eng|d | ||
024 | 7 | |2 scopus |a 2-s2.0-75749124316 | |
030 | |a SABCE | ||
040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
100 | 1 | |a González, G. | |
245 | 1 | 0 | |a Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: Modeling for its applications in biomolecule detection |
260 | |c 2010 | ||
270 | 1 | 0 | |m Battaglini, F.; INQUIMAE - DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2, 1428 Buenos Aires, Argentina; email: battagli@qi.fcen.uba.ar |
504 | |a Link, J.R., Sailor, M.J., Smart dust: self-assembling, self-orienting photonic crystals of porous Si (2003) PNAS, 100, pp. 10607-10610 | ||
504 | |a Anderson, R.C., Muller, R.S., Tobias, C.W., Investigations of porous silicon for vapor sensing (1990) Sens. Actuators A: Phys., 23, pp. 835-839 | ||
504 | |a Ben-Chorin, M., Kux, A., Adsorbate effects on photoluminescence and electrical conductivity of porous silicon (1994) Appl. Phys. Lett., 64, pp. 481-483 | ||
504 | |a Lahuerhaas, J.M., Sailor, M.J., Chemical modification of the photoluminescence quenching of porous silicon (1993) Science, 261, pp. 1567-1568 | ||
504 | |a Chan, S., Horner, S., Fauchet, P., Miller, B.L., Identification of gram negative bacteria using nanoscale silicon microcavities (2001) J. Am. Chem. Soc., 123, pp. 11797-11798 | ||
504 | |a Vlassiouk, I., Takmakov, P., Smirnov, S., Sensing DNA hybridization via ionic conductance through a nanoporous electrode (2005) Langmuir, 21, pp. 4776-4778 | ||
504 | |a Bayley, H., Martin, C.R., Resistive-pulse sensings from microbes to molecules (2000) Chem. Rev., 100, pp. 2575-2594 | ||
504 | |a Nozawa, K., Osono, C., Sugawara, M., Biotinylated MCM-41 channels as a sensing element in planar bilayer lipid membranes (2007) Sens. Actuators B: Chem., 126, pp. 632-640 | ||
504 | |a Mortari, A., Maaroof, A., Martin, D., Cortie, M.B., Mesoporous gold electrodes for sensors based on electrochemical double layer capacitance (2007) Sens. Actuators B: Chem., 123, pp. 262-268 | ||
504 | |a Siwy, Z., Trofin, L., Kohli, P., Baker, L.A., Trautmann, C., Martin, C.R., Protein biosensors based on biofunctionalized conical gold nanotubes (2005) J. Am. Chem. Soc., 127, pp. 5000-5001 | ||
504 | |a Uram, J.D., Ke, K., Hunt, A.J., Mayer, M., Label-free affinity assays by rapid detection of immune complexes in submicrometer pores (2006) Angew. Chem. Int. Ed., 45, pp. 2281-2285 | ||
504 | |a Ito, T., Sun, L., Henriquez, R.R., Crooks, R.M., A carbon nanotube-based Coulter nanoparticle counter (2004) Acc. Chem. Res., 37, pp. 937-945 | ||
504 | |a Zhang, B., Zhang, Y.H., White, H.S., The nanopore electrode (2004) Anal. Chem., 76, pp. 6229-6238 | ||
504 | |a Kumar, S.K., Hong, J.-D., Photoresponsive ion gating function of an azobenzene polyelectrolyte multilayer spin-self-assembled on a nanoporous support (2008) Langmuir, 24, pp. 4190-4193 | ||
504 | |a Hong, S.U., Bruening, M.L., Separation of amino acid mixtures using multilayer polyelectrolyte nanofiltration membranes (2006) J. Membr. Sci., 280, pp. 1-5 | ||
504 | |a Newman, J., Thomas-Alyea, K., (2004) Electrochemical Systems - Chapter 11. 3rd ed., , John Wiley & Sons | ||
504 | |a Zhang, Y.H., Zhang, B., White, H.S., Electrochemistry of nanopore electrodes in low ionic strength solutions (2006) J. Phys. Chem. B, 110, pp. 1768-1774 | ||
504 | |a Lee, S., Zhang, Y., White, H.S., Harrell, C.C., Martin, C.R., Electrophoretic capture and detection of nanoparticles at the opening of a membrane pore using scanning electrochemical microscopy (2004) Anal. Chem., 76, pp. 6108-6115 | ||
504 | |a Bard, A.J., Faulkner, L.R., (2001) Electrochemical Methods. 2nd ed., , Wiley, New York Chapter 6, pp. 236-239 | ||
504 | |a Berglund, G.I., Carlsson, G.H., Smith, A.T., Szoke, H., Henriksen, A., Hajdu, J., The catalytic pathway of horseradish peroxidase at high resolution (2002) Nature, 417, pp. 463-468 | ||
504 | |a Demirel, G., Çaykara, T., Akaoglu, B., Çakmak, M., Construction of a novel multilayer system and its use for oriented immobilization of immunoglobulin G (2007) Surf. Sci., 601, pp. 4563-4570 | ||
506 | |2 openaire |e Política editorial | ||
520 | 3 | |a We report the numerical simulation of an electrochemical system compromising a mesoporous material placed at a close distance of a working electrode. The effect of mesoscopic domains to the amperometric response of an electroactive species by applying a cyclic voltammetry is simulated to establish the influence of different parameters on the sensitivity of this system to detect molecules able to block the pores. Alumina membranes were chosen as mesoporous material; they were modified with anti-horseradish peroxidase as model system to test the behavior predicted by the simulation. The label-free assembled electrochemical system shows a reproducible behavior and it is able to detect a 10 nM protein concentration. © 2008 Elsevier B.V. All rights reserved. |l eng | |
536 | |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2006-00575 | ||
536 | |a Detalles de la financiación: Universidad de Buenos Aires, X850, X012 | ||
536 | |a Detalles de la financiación: This work was supported by grants of Agencia de Promoción Científica (PICT 2006-00575) and Universidad de Buenos Aires (Project X012 and X850). Fernando Battaglini and Graciela González are research staff of CONICET. Graciela Alicia González is a Lecturer at Universidad de Buenos Aires and research staff of the Argentina Research Council (CONICET). She received her PhD from Universidad de Buenos Aires (2003). Her research interests are modeling of electrochemical processes, nanotechnology and materials science. Graciela Priano is a researcher at Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina. She obtained her Licenciatura en Ciencias Químicas at the same University, where she also received her PhD in Chemistry (2006). Her work focuses on the functionalization of surfaces with specific recognition molecules for the development of test and sensors applied to endotoxin detection. She also works on its application on silicon porous structures in collaboration with Dr. R. Koropecki's Group (Universidad del Litoral, Argentina). Mauricio Günther is an undergraduate and fellow student of chemistry at Universidad de Buenos Aires. Fernando Battaglini is an Associate Professor at Universidad de Buenos Aires and research staff of the Argentina Research Council (CONICET). He received his PhD from Universidad de Buenos Aires in 1991. His research interests are biosensors, electrochemistry and materials science. | ||
593 | |a INQUIMAE - DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2, 1428 Buenos Aires, Argentina | ||
690 | 1 | 0 | |a AMPEROMETRY |
690 | 1 | 0 | |a DIGITAL SIMULATION |
690 | 1 | 0 | |a LABEL-FREE SENSING |
690 | 1 | 0 | |a MESOPOROUS MEMBRANE |
690 | 1 | 0 | |a ALUMINA MEMBRANES |
690 | 1 | 0 | |a AMPEROMETRIC RESPONSE |
690 | 1 | 0 | |a AMPEROMETRY |
690 | 1 | 0 | |a BIOMOLECULE DETECTION |
690 | 1 | 0 | |a CLOSE DISTANCE |
690 | 1 | 0 | |a DIGITAL SIMULATION |
690 | 1 | 0 | |a ELECTROACTIVE SPECIES |
690 | 1 | 0 | |a ELECTROCHEMICAL SYSTEMS |
690 | 1 | 0 | |a HORSE-RADISH PEROXIDASE |
690 | 1 | 0 | |a LABEL FREE |
690 | 1 | 0 | |a LABEL-FREE SENSING |
690 | 1 | 0 | |a MASS TRANSPORT |
690 | 1 | 0 | |a MESOPOROUS MEMBRANES |
690 | 1 | 0 | |a MESOSCOPICS |
690 | 1 | 0 | |a MODEL SYSTEM |
690 | 1 | 0 | |a NUMERICAL SIMULATION |
690 | 1 | 0 | |a PROTEIN CONCENTRATIONS |
690 | 1 | 0 | |a REPRODUCIBLE BEHAVIOR |
690 | 1 | 0 | |a WORKING ELECTRODE |
690 | 1 | 0 | |a COMPUTER SIMULATION |
690 | 1 | 0 | |a CYCLIC VOLTAMMETRY |
690 | 1 | 0 | |a LABELS |
690 | 1 | 0 | |a MESOPOROUS MATERIALS |
690 | 1 | 0 | |a OPTICAL DEVICES |
690 | 1 | 0 | |a SUPERCONDUCTING MATERIALS |
690 | 1 | 0 | |a MATHEMATICAL MODELS |
700 | 1 | |a Priano, G. | |
700 | 1 | |a Günther, M. | |
700 | 1 | |a Battaglini, Fernando | |
773 | 0 | |d 2010 |g v. 144 |h pp. 349-353 |k n. 2 |p Sens Actuators, B Chem |x 09254005 |w (AR-BaUEN)CENRE-6816 |t Sensors and Actuators, B: Chemical | |
856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-75749124316&doi=10.1016%2fj.snb.2008.11.006&partnerID=40&md5=80b28df47e9481041611e5073791c284 |x registro |y Registro en Scopus |
856 | 4 | 0 | |u https://doi.org/10.1016/j.snb.2008.11.006 |x doi |y DOI |
856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_09254005_v144_n2_p349_Gonzalez |x handle |y Handle |
856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09254005_v144_n2_p349_Gonzalez |x registro |y Registro en la Biblioteca Digital |
961 | |a paper_09254005_v144_n2_p349_Gonzalez |b paper |c PE | ||
962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion |