Selenium-based self-assembled monolayers: the nature of adsorbate - surface interactions

In recent years, self-assembled monolayers (SAMs) of selenols have been characterized using electrochemistry, scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), thermal desorption spectroscopy, and other experimental approaches. Interest in the relative stability and conduc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: De La Llave, E.
Otros Autores: Scherlis, D.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09989caa a22010697a 4500
001 PAPER-8143
003 AR-BaUEN
005 20230518203757.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-73649099106 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a LANGD 
100 1 |a De La Llave, E. 
245 1 0 |a Selenium-based self-assembled monolayers: the nature of adsorbate - surface interactions 
260 |b American Chemical Society  |c 2010 
270 1 0 |m Scherlis, D. A.; Departamento de Química Inorgánica, Analítica y Química física/'Inquimae, Pab. II, Buenos Aires C1428EHA, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M., (2005) Chem. Rev, 105, p. 1103 
504 |a Vericat, C., Vela, M.E., Benitez, G.A., Martin Gago, J.A., Torrelles, X., Salvarezza, R.C., (2006) J. Phys.: Condens. Matter, 18, p. 867 
504 |a Seshadri, K., Atre, S.V., Tao, Y.-T., Lee, M.-T., Allara, D.L., (1997) J. Am. Chem. Soc, 119, p. 4698 
504 |a Bernard, M.-C., Chausse, A., Cabet-Deliry, E., Chehimi, M.M., Pinson, J., Podvorica, F., Vautrin-Ul, C., (2003) Chem. Mater, 15, p. 3450 
504 |a Laforgue, A., Addou, T., Belanger, D., (2005) Langmuir, 21, p. 6855 
504 |a de la Llave, E., Ricci, A., Calvo, E.J., Scherlis, D.A., (2008) J. Phys. Chem. C, 112, p. 17611 
504 |a Jiang, D.E., Sumpter, B.G., Dai, S., (2006) J. Am. Chem. Soc, 128, p. 6030 
504 |a Ricci, A., Bonazzola, C., Calvo, E.J., (2006) Phys. Chem. Chem. Phys, 8, p. 4297 
504 |a Allongue, P., Delamar, M., Desbat, B., Fagebaume, O., Hitmi, R., Pinson, J., Saveant, J.-M., (1997) J. Am. Chem. Soc, 119, p. 201 
504 |a Adenier, A., Bernard, M.-C., Chehimi, M.M., Cabet-Deliry, E., Desbat, B., Fagebaume, O., Pinson, J., Podvorica, F., (2001) J. Am. Chem. Soc, 123, p. 4541 
504 |a Strano, M.S., Dyke, C.A., Usrey, M.L., Barone, P.W., Allen, M.J., Shan, H., Kittrell, C., Smalley, R.E., (2003) Science, 301, p. 1519 
504 |a Stewart, M.P., Maya, F., Kosynkin, D.V., Dirk, S.M., Stapleton, J.J., McGuiness, C.L., Allara, D.L., Tour, J.M., (2004) J. Am. Chem. Soc, 126, p. 370 
504 |a Samant, M.G., Brown, C.A., Gordon II, J.G., (1992) Langmuir, 8, p. 1615 
504 |a Dishner, M.H., Hemminger, J.C., Feher, F.J., (1997) Langmuir, 13, p. 4788 
504 |a Huang, F.K., Horton Jr., R.C., Myles, D.C., Garrell, R.L., (1998) Langmuir, 14, p. 4802 
504 |a Nakamura, T., Kimura, R., Matsui, F., Kondoh, H., Ohta, T., Sakai, H., Abe, M., Matsumoto, M., (2000) Langmuir, 16, p. 4213 
504 |a Nakano, K., Sato, T., Tazaki, M., Takagi, M., (2000) Langmuir, 16, p. 2225 
504 |a Monnell, J.D., Stapleton, J.J., Jackiw, J.J., Dunbar, T., Reinerth, W.A., Dirk, S.M., Tour, J.M., Weiss, P.S., (2004) J. Phys. Chem. B, 105, p. 9834 
504 |a Sato, Y., Mizutani, F., (2004) Phys. Chem. Chem. Phys, 6, p. 1328 
504 |a Käfer, D., Bashir, A., Witte, G., (2007) J. Phys. Chem. C, 111, p. 10546 
504 |a Brust, M., Stuhr-Hansen, N., Nørgaard, K., Christensen, J.B., Nielsen, L.K., Bjørnholm, T., (2001) Nano Lett, 1, p. 189 
504 |a Yee, C.K., Ulman, A., Ruiz, J.D., Parikh, A., White, H., Rafailovich, M., (2003) Langmuir, 19, p. 9450 
504 |a Zelakiewicz, B.S., Yonezawa, T., Tong, Y., (2004) J. Am. Chem. Soc, 126, p. 8112 
504 |a Shaporenko, A., Müller, J., Weidner, T., Terfort, A., Zharnikov, M., (2007) J. Am. Chem. Soc, 129, p. 2232 
504 |a Shaporenko, A., Ulman, A., Terfort, A., Zharnikov, M., (2005) J. Phys. Chem. B, 109, p. 3898 
504 |a Yaliraki, S.N., Kemp, M., Ratner, M.A., (1999) J. Am. Chem. Soc, 121, p. 3428 
504 |a Di Ventra, M., Lang, N.D., (2001) Phys. Rev. B, 65, p. 45402 
504 |a Patrone, L., Palacin, S., Charlier, J., Armand, F., Bourgoin, J.P., Tang, H., Gauthier, S., (2003) Phys. Rev. Lett, 91, p. 96802 
504 |a Patrone, L., Palacin, S., Bourgoin, J.P., Lagoute, J., Zambelli, T., Gauthier, S., (2002) Chem. Phys, 281, p. 325 
504 |a Patrone, L., Palacin, S., Bourgoin, J.P., (2003) Appl. Surf. Sci, 212-213, p. 446 
504 |a Yokota, K., Taniguchi, M., Kawai, T., (2007) J. Am. Chem. Soc, 129, p. 5818 
504 |a Monnell, J.D., Stapleton, J.J., Dirk, S.M., Reinerth, W.A., Tour, J.M., Allara, D.L., Weiss, P.S., (2005) J. Phys. Chem. B, 109, p. 20343 
504 |a Engelkes, V.B., Beebe, J.M., Frisbie, C.D., (2004) J. Am. Chem. Soc, 126, p. 14287 
504 |a Standard, J.M., Gregory, B.W., Clark, B.K., (2007) THEOCHEM, 803, p. 103 
504 |a Mankefors, S., Grigoriev, A., Wendin, G., (2003) Nanotechnology, 14, p. 849 
504 |a Hohenberg, P., Kohn, W., (1964) Phys. Rev, 136, p. 864 
504 |a Kohn, W., Sham, L., (1965) Phys. Rev, 140, p. 1133 
504 |a Giannozzi, P., (2009) J. Phys.: Condens. Matter, 21, p. 395502. , http://www.quantum-espresso.org 
504 |a Vanderbilt, D., (1990) Phys. Rev. B, 41, p. 7892 
504 |a Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett, 77, p. 3865 
504 |a Monkhorst, H., Pack, J., (1976) Phys. Rev. B, 13, p. 5188 
504 |a Methfessel, M., Paxton, T., (1989) Phys. Rev. B, 40, p. 3616 
504 |a The hep and the fcc sites differ in their relative location with respect to the inner structure: the former is above a Au atom of the second layer, whereas the latter lies over a hollow site; Geometry optimizations of SePh and SPh on gold led to upright molecular configurations, with the plane of the benzenes forming an angle close to 80° with respect to the Au surface. On the other hand, data in ref 20 have been assigned via NEXAFS to lying molecules. The reported experimental tilt angles in the denser phases of the SePh and SPh films were 71° and 36°, respectively, and 21° in the diluted phases. These large differences confronting the experimental and the computed tilts can be ascribed to the well-known DFT shortcomings to represent the van der Waals forces operative in between aromatic rings and between these rings and the surface; The choice of an index to measure the derealization degree is not unique: the formula proposed here is just one out of many possible criteria. I(q) seeks the maximum overlap between the initial and final PDOS for all possible shifts in energy ε0. Under this definition, a perturbation that only displaces the center of the PDOS to lower or higher energies, without really affecting its shape, would return I(q) = 1, detecting no delocalization; Hansson, G.V., Flodström, S.A., (1978) Phys. Rev. B, 18, p. 1572 
504 |a Rusu, P.C., Brocks, G., (2006) J. Phys. Chem. B, 110, p. 22628 
504 |a Nagoya, A., Morikawa, Y., (2007) J. Phys.: Condens. Matter, 19, p. 365245 
504 |a Gronbëok, H., Curioni, A., Andreoni, W., (2000) J. Am. Chem. Soc, 122, p. 3839 
520 3 |a In recent years, self-assembled monolayers (SAMs) of selenols have been characterized using electrochemistry, scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), thermal desorption spectroscopy, and other experimental approaches. Interest in the relative stability and conductance of the Se - Au interface as compared to S-Au prompted different investigations which have led to contradictory results. From the theoretical side, on the other hand, the study of selenol-based SAMs has concentrated on the investigation of the electron transport across the Se-Au contact, whereas the structural and the thermodynamic features of the monolayer were essentially neglected. In this Article, we examine the binding of selenols to the Au(111) surface using density functional theory with plane wave basis sets and periodic boundary conditions. Our calculations provide insights on the geometry of the headgroup, the stability of the monolayer, and the electronic properties of the bond. In particular, we propose that the presence of a conjugated backbone might be a major factor determining the relative conductance at the monolayer, by differentially enhancing the intramolecular electron transport in selenols with respect to thiols. This surmise, if confirmed, would explain the conflictive data coming from the available experiments. © 2009 American Chemical Society.  |l eng 
593 |a Departamento de Química Inorgánica, Analítica y Química física/'Inquimae, Pab. II, Buenos Aires C1428EHA, Argentina 
690 1 0 |a DENSITY FUNCTIONAL THEORY 
690 1 0 |a ELECTRON TRANSPORT PROPERTIES 
690 1 0 |a ELECTRONIC PROPERTIES 
690 1 0 |a ORGANIC POLYMERS 
690 1 0 |a SCANNING TUNNELING MICROSCOPY 
690 1 0 |a SELENIUM 
690 1 0 |a THERMAL DESORPTION SPECTROSCOPY 
690 1 0 |a X RAY PHOTOELECTRON SPECTROSCOPY 
690 1 0 |a CONJUGATED BACKBONES 
690 1 0 |a ELECTRON TRANSPORT 
690 1 0 |a EXPERIMENTAL APPROACHES 
690 1 0 |a PERIODIC BOUNDARY CONDITIONS 
690 1 0 |a PLANE-WAVE BASIS SET 
690 1 0 |a RELATIVE CONDUCTANCE 
690 1 0 |a RELATIVE STABILITIES 
690 1 0 |a SURFACE INTERACTIONS 
690 1 0 |a SELF ASSEMBLED MONOLAYERS 
700 1 |a Scherlis, D.A. 
773 0 |d American Chemical Society, 2010  |g v. 26  |h pp. 173-178  |k n. 1  |p Langmuir  |x 07437463  |t Langmuir 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-73649099106&doi=10.1021%2fla903660y&partnerID=40&md5=ad7dd894aca53b268df3e18e5df8a219  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/la903660y  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_07437463_v26_n1_p173_DeLaLlave  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v26_n1_p173_DeLaLlave  |y Registro en la Biblioteca Digital 
961 |a paper_07437463_v26_n1_p173_DeLaLlave  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 69096