Residuated lattices as an algebraic semantics for paraconsistent nelson's logic
The class of NPc-lattices is introduced as a quasivariety of commutative residuated lattices, and it is shown that the class of pairs (A,A+) such that A is an NPc-lattice and A+ is its positive cone, is a matrix semantics for Nelson paraconsistent logic.
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2009
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 04738caa a22006497a 4500 | ||
|---|---|---|---|
| 001 | PAPER-8248 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203803.0 | ||
| 008 | 190411s2009 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-72649088849 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a JLCOE | ||
| 100 | 1 | |a Busaniche, M. | |
| 245 | 1 | 0 | |a Residuated lattices as an algebraic semantics for paraconsistent nelson's logic |
| 260 | |c 2009 | ||
| 270 | 1 | 0 | |m Busaniche, M.; Instituto de Matemática Aplicada Del Litoral- FIQ, CONICET-UNL, Guemes 3450, S3000GLN-Santa Fe, Argentina; email: manuelabusaniche@yahoo.com.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Belnap, N.D., A useful four-valued logic (1977) Modern Uses of Multiple-Valued Logic, pp. 7-37. , G. Epstein and M. J. Dunn, eds. Reidel, Dordrecht | ||
| 504 | |a Blok, W.J., Pigozzi, D., Algebraic logic (1989) Memoirs of the American Mathematical Society, 77 | ||
| 504 | |a Busaniche, M., Cignoli, R., Constructive logic with strong negation as a substructural logic (2008) Journal of Logic and Computation, , doi: 10.1093/logcom/exn081 | ||
| 504 | |a Fidel, M.M., An algebraic study of a propositional system of Nelson (1978) Lectures in Pure and Applied Mathematics, 39, pp. 99-117. , Mathematical Logic. Proceedings of the First Brazilian Conference.A. I. Arruda, N. C. A. da Costa, R. Chuaqui, eds, Marcel Dekker, New York and Basel | ||
| 504 | |a Galatos, N., Jipsen, P., Kowalski, T., Ono, H., Residuated lattices: An algebraic glimpse at substructural logics (2007) Studies in Logics and TheFoundations of Mathematics, 151. , Elsevier, New York | ||
| 504 | |a Galatos, N., Raftery, J.G., Adding involution to residuated structures (2004) Stud. Log., 77, pp. 181-207 | ||
| 504 | |a Hart, J.B., Rafter, L., Tsinakis, C., The structure of commutative residuated lattices (2002) Int. J. Algebra Comput., 12, pp. 509-524 | ||
| 504 | |a Odintsov, S.P., Algebraic semantics for paraconsistent Nelson's logic (2003) Journal of Logic and Computation, 13, pp. 453-468 | ||
| 504 | |a Odintsov, S.P., On the representation of N4-lattices (2004) Stud. Log., 76, pp. 385-405 | ||
| 504 | |a Odintsov, S.P., On the class of extensions of nelsońs paraconsistent logic (2005) Stud. Log., 80, pp. 291-320 | ||
| 504 | |a Sendlewski, A., Nelson algebras through Heyting ones. I (1990) Stud. Log., 49, pp. 105-126 | ||
| 504 | |a Spinks, M., Veroff, R., Constructive logic with strong negation is a substructural logic. i (2008) Stud. Log., 88, pp. 325-348 | ||
| 504 | |a Spinks, M., Veroff, R., Constructive logic with strong negation is a substructural logic. II (2008) Stud. Log., 89, pp. 401-425 | ||
| 504 | |a Tsinakis, C., Wille, A.M., Minimal varieties of involutive residuated lattices (2006) Stud. Log., 83, pp. 407-423 | ||
| 504 | |a Vakarelov, D., Notes on N-lattices and constructive logic with strong negation (1977) Stud. Log., 34, pp. 109-125 | ||
| 520 | 3 | |a The class of NPc-lattices is introduced as a quasivariety of commutative residuated lattices, and it is shown that the class of pairs (A,A+) such that A is an NPc-lattice and A+ is its positive cone, is a matrix semantics for Nelson paraconsistent logic. |l eng | |
| 593 | |a Instituto de Matemática Aplicada Del Litoral- FIQ, CONICET-UNL, Guemes 3450, S3000GLN-Santa Fe, Argentina | ||
| 593 | |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a CONSTRUCTIVE LOGIC |
| 690 | 1 | 0 | |a N4-LATTICES |
| 690 | 1 | 0 | |a PARACONSISTENT NELSON'S LOGIC |
| 690 | 1 | 0 | |a RESIDUATED LATTICES WITH INVOLUTION |
| 690 | 1 | 0 | |a TWIST-STRUCTURES |
| 690 | 1 | 0 | |a ALGEBRAIC SEMANTIC |
| 690 | 1 | 0 | |a CONSTRUCTIVE LOGIC |
| 690 | 1 | 0 | |a MATRIX |
| 690 | 1 | 0 | |a PARACONSISTENT LOGIC |
| 690 | 1 | 0 | |a RESIDUATED LATTICES |
| 690 | 1 | 0 | |a COMBINATORIAL CIRCUITS |
| 690 | 1 | 0 | |a SEMANTICS |
| 690 | 1 | 0 | |a FORMAL LOGIC |
| 700 | 1 | |a Cignoli, R. | |
| 773 | 0 | |d 2009 |g v. 19 |h pp. 1019-1029 |k n. 6 |p J Logic Comput |x 0955792X |t Journal of Logic and Computation | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-72649088849&doi=10.1093%2flogcom%2fexp028&partnerID=40&md5=d2a8e3f3a34795372974be634322a25a |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1093/logcom/exp028 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_0955792X_v19_n6_p1019_Busaniche |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0955792X_v19_n6_p1019_Busaniche |y Registro en la Biblioteca Digital |
| 961 | |a paper_0955792X_v19_n6_p1019_Busaniche |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 69201 | ||