Residuated lattices as an algebraic semantics for paraconsistent nelson's logic

The class of NPc-lattices is introduced as a quasivariety of commutative residuated lattices, and it is shown that the class of pairs (A,A+) such that A is an NPc-lattice and A+ is its positive cone, is a matrix semantics for Nelson paraconsistent logic.

Guardado en:
Detalles Bibliográficos
Autor principal: Busaniche, M.
Otros Autores: Cignoli, R.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04738caa a22006497a 4500
001 PAPER-8248
003 AR-BaUEN
005 20230518203803.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-72649088849 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JLCOE 
100 1 |a Busaniche, M. 
245 1 0 |a Residuated lattices as an algebraic semantics for paraconsistent nelson's logic 
260 |c 2009 
270 1 0 |m Busaniche, M.; Instituto de Matemática Aplicada Del Litoral- FIQ, CONICET-UNL, Guemes 3450, S3000GLN-Santa Fe, Argentina; email: manuelabusaniche@yahoo.com.ar 
506 |2 openaire  |e Política editorial 
504 |a Belnap, N.D., A useful four-valued logic (1977) Modern Uses of Multiple-Valued Logic, pp. 7-37. , G. Epstein and M. J. Dunn, eds. Reidel, Dordrecht 
504 |a Blok, W.J., Pigozzi, D., Algebraic logic (1989) Memoirs of the American Mathematical Society, 77 
504 |a Busaniche, M., Cignoli, R., Constructive logic with strong negation as a substructural logic (2008) Journal of Logic and Computation, , doi: 10.1093/logcom/exn081 
504 |a Fidel, M.M., An algebraic study of a propositional system of Nelson (1978) Lectures in Pure and Applied Mathematics, 39, pp. 99-117. , Mathematical Logic. Proceedings of the First Brazilian Conference.A. I. Arruda, N. C. A. da Costa, R. Chuaqui, eds, Marcel Dekker, New York and Basel 
504 |a Galatos, N., Jipsen, P., Kowalski, T., Ono, H., Residuated lattices: An algebraic glimpse at substructural logics (2007) Studies in Logics and TheFoundations of Mathematics, 151. , Elsevier, New York 
504 |a Galatos, N., Raftery, J.G., Adding involution to residuated structures (2004) Stud. Log., 77, pp. 181-207 
504 |a Hart, J.B., Rafter, L., Tsinakis, C., The structure of commutative residuated lattices (2002) Int. J. Algebra Comput., 12, pp. 509-524 
504 |a Odintsov, S.P., Algebraic semantics for paraconsistent Nelson's logic (2003) Journal of Logic and Computation, 13, pp. 453-468 
504 |a Odintsov, S.P., On the representation of N4-lattices (2004) Stud. Log., 76, pp. 385-405 
504 |a Odintsov, S.P., On the class of extensions of nelsońs paraconsistent logic (2005) Stud. Log., 80, pp. 291-320 
504 |a Sendlewski, A., Nelson algebras through Heyting ones. I (1990) Stud. Log., 49, pp. 105-126 
504 |a Spinks, M., Veroff, R., Constructive logic with strong negation is a substructural logic. i (2008) Stud. Log., 88, pp. 325-348 
504 |a Spinks, M., Veroff, R., Constructive logic with strong negation is a substructural logic. II (2008) Stud. Log., 89, pp. 401-425 
504 |a Tsinakis, C., Wille, A.M., Minimal varieties of involutive residuated lattices (2006) Stud. Log., 83, pp. 407-423 
504 |a Vakarelov, D., Notes on N-lattices and constructive logic with strong negation (1977) Stud. Log., 34, pp. 109-125 
520 3 |a The class of NPc-lattices is introduced as a quasivariety of commutative residuated lattices, and it is shown that the class of pairs (A,A+) such that A is an NPc-lattice and A+ is its positive cone, is a matrix semantics for Nelson paraconsistent logic.  |l eng 
593 |a Instituto de Matemática Aplicada Del Litoral- FIQ, CONICET-UNL, Guemes 3450, S3000GLN-Santa Fe, Argentina 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
690 1 0 |a CONSTRUCTIVE LOGIC 
690 1 0 |a N4-LATTICES 
690 1 0 |a PARACONSISTENT NELSON'S LOGIC 
690 1 0 |a RESIDUATED LATTICES WITH INVOLUTION 
690 1 0 |a TWIST-STRUCTURES 
690 1 0 |a ALGEBRAIC SEMANTIC 
690 1 0 |a CONSTRUCTIVE LOGIC 
690 1 0 |a MATRIX 
690 1 0 |a PARACONSISTENT LOGIC 
690 1 0 |a RESIDUATED LATTICES 
690 1 0 |a COMBINATORIAL CIRCUITS 
690 1 0 |a SEMANTICS 
690 1 0 |a FORMAL LOGIC 
700 1 |a Cignoli, R. 
773 0 |d 2009  |g v. 19  |h pp. 1019-1029  |k n. 6  |p J Logic Comput  |x 0955792X  |t Journal of Logic and Computation 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-72649088849&doi=10.1093%2flogcom%2fexp028&partnerID=40&md5=d2a8e3f3a34795372974be634322a25a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1093/logcom/exp028  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0955792X_v19_n6_p1019_Busaniche  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0955792X_v19_n6_p1019_Busaniche  |y Registro en la Biblioteca Digital 
961 |a paper_0955792X_v19_n6_p1019_Busaniche  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 69201