The number of convergent graphs under the biclique operator with no twin vertices is finite

The biclique graph of G, K B (G), is the intersection graph of the bicliques of G. Given a graph G, the iterated biclique graph of G, K B k (G), is the graph defined iteratively as follows: K B k + 1 (G) = K B (K B k (G)). Say that a graph G diverges (resp. converges) under the operator KB whenever...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Groshaus, M.E
Otros Autores: Montero, L.P
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05178caa a22005417a 4500
001 PAPER-8272
003 AR-BaUEN
005 20230518203805.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-71049159216 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Groshaus, M.E. 
245 1 4 |a The number of convergent graphs under the biclique operator with no twin vertices is finite 
260 |c 2009 
270 1 0 |m Groshaus, M.E.; Departamento de Computación, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina; email: groshaus@dc.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Alcón, L., Faria, L., de Figueiredo, C.M.H., Gutierrez, M., Clique graph recognition is NP-complete (2006) Lecture Notes in Comput. Sci., 4271, pp. 269-277. , Graph-theoretic concepts in computer science 
504 |a Frías-Armenta, M.E., Neumann-Lara, V., Pizaña, M.A., Dismantlings and iterated clique graphs (2004) Discrete Math., 282, pp. 263-265 
504 |a Groshaus, M.E., Montero, L.P., On the iterated biclique operator Proceedings of the VI ALIO/EURO Workshop on Applied Combinatorial Optimization, p. 2008. , pp. CD-ROM Version 
504 |a Groshaus, M.E., Szwarcfiter, J.L., (2008) Biclique graphs, , manuscript 
504 |a Hamelink, R.C., A partial characterization of clique graphs (1968) J. Combinatorial Theory, 5, pp. 192-197 
504 |a Larrión, F., de Mello, C.P., Morgana, A., Neumann-Lara, V., Pizaña, M.A., The clique operator on cographs and serial graphs (2004) Discrete Math., 282, pp. 183-191 
504 |a Larrión, F., Neumann-Lara, V., Pizaña, M.A., Whitney triangulations, local girth and iterated clique graphs (2002) Discrete Math., 258, pp. 123-135 
504 |a Larrión, F., Pizaña, M.A., Villarroel-Flores, R., Equivariant collapses and the homotopy type of iterated clique graphs (2008) Discrete Math., 308, pp. 3199-3207 
504 |a Montero, L.P., Convergencia y divergencia del grafo biclique iterado, (2008), Master's thesis, Departamento de Computación. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires; Neumann Lara, V., Clique divergence in graphs (1978) Algebraic methods in graph theory, 1-2. , Szeged 
504 |a Neumann Lara, V., Clique divergence in graphs (1981) Colloq. Math. Soc. János Bolyai, 25, pp. 563-569. , North-Holland, Amsterdam 
504 |a Pizaña, M.A., The icosahedron is clique divergent (2003) Discrete Math., 262, pp. 229-239 
504 |a Roberts, F.S., Spencer, J.H., A characterization of clique graphs (1971) J. Combinatorial Theory Ser. B, 10, pp. 102-108 
520 3 |a The biclique graph of G, K B (G), is the intersection graph of the bicliques of G. Given a graph G, the iterated biclique graph of G, K B k (G), is the graph defined iteratively as follows: K B k + 1 (G) = K B (K B k (G)). Say that a graph G diverges (resp. converges) under the operator KB whenever lim k → ∞ V (K B k (G)) = ∞ (resp. lim k → ∞ K B k (G) = K B m (G) for some m). Each of these behaviours were recently characterized. These characterizations lead to a O (n 4) time algorithm for deciding the divergence or convergence of a graph. In this work we prove that any graph with at least 7 bicliques diverges under the biclique operator. Furthermore, we prove that graphs with no twin vertices that are not divergent have at most 12 vertices, which leads to a linear time algorithm to decide if a graph converges or diverges under the biclique operator. © 2009 Elsevier B.V. All rights reserved.  |l eng 
536 |a Detalles de la financiación: PICT 1562 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires, X456, X143 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: 1 Partially supported by UBACyT X456, X143 and ANPCyT PICT 1562 Grants and by CONICET, Argentina. 2 Partially supported by UBACyT X456, ANPCyT PICT 1562 and CONICET Grants, Argentina. 
593 |a Departamento de Computación, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a BICLIQUE 
690 1 0 |a BICLIQUE GRAPH 
690 1 0 |a CLIQUE GRAPH 
690 1 0 |a ITERATED BICLIQUE OPERATOR 
700 1 |a Montero, L.P. 
773 0 |d 2009  |g v. 35  |h pp. 241-246  |k n. C  |p Electron. Notes Discrete Math.  |x 15710653  |t Electronic Notes in Discrete Mathematics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-71049159216&doi=10.1016%2fj.endm.2009.11.040&partnerID=40&md5=e2cfc330293fa4b4fa589375a3963ae4  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.endm.2009.11.040  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15710653_v35_nC_p241_Groshaus  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15710653_v35_nC_p241_Groshaus  |y Registro en la Biblioteca Digital 
961 |a paper_15710653_v35_nC_p241_Groshaus  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 69225