Interfacial and foaming properties of soy protein and their hydrolysates

The objective of the work was to study the impact of soy protein hydrolysis on foaming and interfacial properties and to analyze the relationship between them. As starting material a sample of commercial soy protein isolate was used (SP) and hydrolysates were produced by an enzymatic reaction, givin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Martínez, K.D
Otros Autores: Carrera Sánchez, C., Rodríguez Patino, J.M, Pilosof, A.M.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 19135caa a22013097a 4500
001 PAPER-8281
003 AR-BaUEN
005 20230518203805.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-70149113195 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a FOHYE 
100 1 |a Martínez, K.D. 
245 1 0 |a Interfacial and foaming properties of soy protein and their hydrolysates 
260 |c 2009 
270 1 0 |m Pilosof, A.M.R.; Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina; email: apilosof@di.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Baeza, R.I., Carrera, C., Rodríguez Patino, J.M., Pilosof, A.M.R., Interactions between β-lactoglobulin and polysaccharides at the air-water interface and the influence on foam properties (2005) Food colloids: Interactions microstructure and processing, pp. 301-316. , Dickinson E. (Ed), The Royal Society of Chemistry, Cambridge 
504 |a Beneventi, D., Carrera, B., Gandini, A., Role of surfactant structure on surface and foaming properties (2001) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 189, pp. 65-73 
504 |a Benjamins, J., (2000) Static and dynamic properties of protein adsorbed at liquid interfaces, , Ph.D. Thesis, Wageningen University 
504 |a Bernardi, L.S., Pilosof, A.M.R., Bartholomai, G.B., Enzymatic modification of soy protein concentrates by fungal and bacterial proteases (1991) Journal of the American Oil Chemists' Society, 68, pp. 102-105 
504 |a Bos, M., Nylander, T., Arnebrant, T., Clark, D.C., (1997) Food emulsifiers and their applications, p. 95. , Hasenhuettl G.L., and Hartel R.W. (Eds), Chapman & Hall, NY 
504 |a Britten, M., Lavoie, L., Foaming properties of proteins as affected by concentration (1992) Journal of Food Science, 57, pp. 1219-1222 
504 |a Carp, D.J., Bartholomai, G.B., Pilosof, A.M.R., A kinetic model to describe liquid drainage from soy protein foams over an extensive protein concentration range (1997) Lebensmittel Wissenschaft und-Technologie, 30, pp. 253-258 
504 |a Carrera, C., Rodríguez Niño, M.R., Molina, S.E., Añón, M.C., Rodríguez Patino, J.M., Soy globulin spread films at the air-water interface (2004) Food Hydrocolloids, 18, pp. 335-347 
504 |a Carrera, C., Rodríguez Niño, M., Rodríguez Patino, J.M., Relaxation phenomena in monoglyceride films at the air-water interface (1999) Colloids and Surfaces B: Biointerfaces, 12, pp. 175-192 
504 |a Church, F.C., Swaisgood, H.E., Porter, D.H., Catignani, G.L., Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins (1983) Journal of Dairy Science, 66, pp. 1219-1227 
504 |a Damodaran, S., (1997) Protein-stabilized foams and emulsions. Food proteins and their applications, pp. 57-110. , Damodaran S., and Paraf A. (Eds), Marcel Dekker 
504 |a Davis, J.P., Doucet, D., Foegeding, E.A., Foaming and interfacial properties of hydrolyzed β-lactoglobulin (2005) Journal of Colloid and Interface Science, 288, pp. 412-422 
504 |a Dickinson, E., (1992) An introduction to food colloids, , Oxford University Press, Oxford 
504 |a Dickinson, E., McClements, D.J., Protein-polysaccharide interactions (1995) Advances in food colloids, pp. 81-101. , Dickinson E., and McClements D.J. (Eds), Blackie Academic and Professional 
504 |a Fruhner, H., Wantke, K.D., Lunkenheimer, K., Relationship between surface dilatational properties and foam stability (1999) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 162, pp. 193-202 
504 |a German, J.B., O'Neil, T.E., Kinsella, J.E., Film forming and foaming behaviour of food proteins (1985) Journal of the American Oil Chemists' Society, 62, p. 1358 
504 |a Girardet, J.M., Humbert, G., Creusot, N., Chardot, V., Campagna, S., Courthaudon, J.L., Dilatational rheology of mixed β-casein/Tween 20 and β-casein (f111-169)/Tween 20 films at oil-water interface (2001) Journal of Colloid and Interface Science, 245, pp. 515-522 
504 |a Graham, D.E., Phillips, M.C., The conformation of proteins at the air-water interface and their role in stabilizing foams (1976) Foams, pp. 237-255. , Akers R.J. (Ed), Academic Press, NY 
504 |a Graham, D.E., Phillips, M.C., Proteins at liquid interfaces II. Adsorption isotherms (1979) Journal of Colloid and Interface Science, 70, pp. 415-426 
504 |a Halling, P.J., Protein-stabilized foams and emulsions (1981) CRC Critical Reviews in Food Science and Nutrition, 12, pp. 155-203 
504 |a Horne, D.S., Rodriguez Patino, J.M., Adsorbed biopolymers: behavior in food applications (2003) Biopolymers at interfaces, pp. 857-900. , Malmsten M. (Ed), Dekker, New York 
504 |a Ipsen, R., Otte, J., Sharma, R., Nielsen, A., Gram Hansen, L., Qvist, K., Effect of limited hydrolysis on the interfacial rheology and foaming properties of β-lactoglobulin A (2001) Colloids and Surfaces B: Biointerfaces, 21, pp. 173-178 
504 |a Kato, A., Nakai, S., Hydrophobicity determined by a fluorescence probe methods and its correlation with surface properties of proteins (1980) Biochimica et Biophysica Acta, 624, pp. 13-20 
504 |a Kim, S.H., Kinsella, J.E., Surface activity of food proteins: relationships between surface pressure development, viscoelasticity of interfacial films and foam stability of bovine serum albumin (1985) Journal of Food Science, 50, pp. 1526-1530 
504 |a Kinsella, J.E., Functional properties of soy proteins (1979) Journal of the American Oil Chemists' Society, 56, pp. 242-258 
504 |a Kitabake, N., Doi, E., Surface tension and foamability of protein and surfactant solutions (1988) Journal of Food Science, 53, pp. 1542-1569 
504 |a Kloek, W., van Vliet, T., Meinders, M., Effect of bulk and interfacial rheological properties on bubble dissolution (2001) Journal of Colloid and Interface Science, 237, pp. 158-166 
504 |a Krause, J.P., Kragel, J., Schewenke, K.D., Properties of interfacial films formed by succinylated leguminin from faba beans (Vicia faba L.) (1997) Colloids and Surfaces B: Biointerfaces, 8, pp. 279-286 
504 |a Krause, J.P., Wustneck, R., Seifert, A., Schewenke, K.D., Stress-relaxation behavior of spread films and coalescence stability of o/w emulsions formed by succinylated legumin from faba beans (Vicia faba L.) (1998) Colloids and Surfaces B: Biointerfaces, 10, pp. 119-126 
504 |a Langevin, D., Influence of interfacial rheology on foam and emulsion properties (2000) Advances in Colloid and Interface Science, 88, pp. 209-222 
504 |a Liu, M., Lee, D.-S., Damodaran, S., Emulsifying properties of acidic subunits of soy 11S globulin (1999) Journal of Agricultural and Food Chemistry, 47, pp. 4970-4975 
504 |a Martin, A.H., Bos, M.A., van Vliet, T., Interfacial rheological properties and conformational aspects of soy glycinin at the air/water interface (2002) Food Hydrocolloids, 16, pp. 63-71 
504 |a Martínez, K.D., Baeza, R.I., Millán, F., Pilosof, A.M.R., Effect of limited hydrolysis of sunflower protein on the interactions with polysaccharides in foams (2005) Food Hydrocolloids, 19, pp. 361-369 
504 |a Martínez, K.D., Carrera, C., Pizones, V., Rodríguez Patino, J.M., Pilosof, A.M.R., Effect of limited hydrolysis of soy protein on the interactions with polysaccharides at the air-water interface (2007) Food Hydrocolloids, 21, pp. 813-822 
504 |a Martínez, K.D., Carrera, C., Pizones, V., Rodríguez Patino, J.M., Pilosof, A.M.R., Soy protein interactions-polysaccharides interactions at the air-water interface (2007) Food Hydrocolloids, 21, pp. 804-812 
504 |a Miñones Conde, J.M., Rodríguez Patino, J.M., The effect of enzymatic treatment of a sunflower protein isolate on the rate of adsorption at the air-water interface (2006) Journal of Food Engineering, 78, pp. 1001-1009 
504 |a Miñones Conde, J.M., Yust, J., Pedroche, M.M., Millán, J.J., Rodríguez Patino, J.M., Effect of enzymatic treatment of extracted sunflower proteins on solubility, amino acid composition, and surface activity (2005) Journal of Agricultural and Food Chemistry, 153, pp. 8038-8045 
504 |a Molina, S.E., Wagner, J.R., Hydrolysates of native and modified soy protein isolates: structural characteristics, solubility and foaming properties (2002) Food Research International, 35, pp. 511-518 
504 |a Monteux, C., Fuller, G.G., Bergeron, V., Shear and dilational surface rheology of oppositely charged polyelectrolyte/surfactant microgels adsorbed at the air-water interface. Influence on foam stability (2004) Journal of Physical Chemistry B, 108, pp. 16473-16482 
504 |a Nahringbauer, I., Dynamic surface tension of aqueous polymer solutions, I: ethyl(hydroxyethyl)cellulose (BERMOCOLL cst-103) (1995) Journal of Colloid and Interface Science, 176, pp. 318-328 
504 |a Nutt, C.W., Burley, R.W., The influence of foam rheology in enhanced oil recovery operations (1989) Foams: Physics, chemistry and structure, pp. 105-147. , Kilson A.J. (Ed), Springer-Verlag, London 
504 |a Panyam, D., Kilara, A., Enhancing the functionality of food proteins by enzymatic modification (1996) Trends in Food Science and Technology, 71, pp. 120-125 
504 |a Perez, O., Carrera, C., Rodriguez Patino, J.M., Pilosof, A., Thermodynamic and dynamic characteristics of hydroxypropylmethylcellulose adsorbed films at the air-water interface (2006) Biomacromolecules, 7, pp. 388-393 
504 |a Perez, O.E., Pilosof, A.M.R., Pulsed electric fields effects on the molecular structure and gelation of [beta]-lactoglobulin concentrate and egg white (2004) Food Research International, 37 (1), pp. 102-110 
504 |a Phillips, M.C., Evans, M.T.A., Graham, D.E., Oldani, D., Structure and properties of proteins films adsorbed at the air-water interface (1975) Colloid and Polymer Science, 253, pp. 424-427 
504 |a Prins, A., Stagnant surface behaviour and its effect on foam and film stability (1999) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 149, pp. 467-473 
504 |a Pusky, G., Modification of functional properties of soy proteins by proteolytic enzyme treatment (1975) Journal of the American Association of Cereal Chemistry, 52, pp. 655-664 
504 |a Rodriguez Niño, M.R., Rodríguez Patino, J.M., Effect of the aqueous phase composition on the adsorption of bovine serum albumin to the air-water interface (2002) Industrial and Engineering Chemistry Research, 41, pp. 1489-1495 
504 |a Rodríguez Niño, M.R., Rodríguez Patino, J.M., Carrera, C., Cejudo, M., Navarro, J.M., Physicochemical characteristics of food lipids and proteins at fluid-fluid interfaces (2003) Chemical Engineering Communications, 190, pp. 15-47 
504 |a Rodriguez Niño, M.R., Wilde, J.P., Clark, D., Husband, F.A., Rodríguez Patino, J.M., (1997) Journal of Agricultural and Food Chemistry, 45, p. 3010 
504 |a Rodriguez Niño, M.R., Wilde, J.P., Clark, D., Husband, F.A., Rodríguez Patino, J.M., Rheokinetic analysis of protein films at the air-aqueous phase interface. 2. Bovine serum albumin adsorption from sucrose aqueous solutions (1997) Journal of Agricultural and Food Chemistry, 45, pp. 3016-3021 
504 |a Rodriguez Patino, J.M., Carrera, C., Molina, S., Rodriguez Niño, M., Añón, C., Adsorption of soy globulin films at the air-water interface (2004) Industrial and Engineering Chemistry Research, 43, pp. 1681-1689 
504 |a Rodríguez Patino, J.M., Carrera, C., Rodríguez Niño, M.R., Cejudo, M., Structural and dynamic properties of milk proteins spread at the air-water interface (2001) Journal of Colloid and Interface Science, 242, pp. 141-151 
504 |a Rodriguez Patino, J.M., Miñones Conde, J., Millan Linares, H., Pedroche, J., Carrera, C., Pizones, V., Interfacial and foaming properties of enzyme-induced hydrolysis of sunflower protein isolate (2007) Food Hydrocolloids, 21, pp. 782-793 
504 |a Rodriguez Patino, J.M., Molina, S.E., Carrera, C., Rodriguez Niño, M.R., Añón, C., Dynamic properties of soy globulin adsorbed films at the air-water interface (2003) Journal of Colloid and Interface Science, 268, pp. 50-57 
504 |a Stubenrauch, C., Miller, R., Stability of foam films and surface rheology: an oscillating bubble study at low frequencies (2004) Journal of Physical Chemistry B, 108, pp. 6412-6421 
504 |a Tornberg, E., The interfacial behaviour of three food proteins studied by the drop volume technique (1978) Journal of the Science of Food and Agriculture, 29, pp. 762-776 
504 |a Utsumi, S., Matsumura, Y., Mori, T., Structure function relationships of soy protein (1997) Food proteins and their application, pp. 257-291. , Damodaran S., and Paraf A. (Eds), Dekker, New York 
504 |a Vohra, P., Kratzer, F.H., Evaluation of soybean meal determines adequacy of heat treatment (1991) Feedstuffs, pp. 23-28 
504 |a Wagner, J.R., Guéguen, J., Surface functional properties of native, acid-treated, and reduced soy glycinin. 1. Foaming properties (1999) Journal of Agricultural and Food Chemistry, 47, pp. 2173-2187 
504 |a Waltermo, A., Claesson, P.M., Simonsson, S., Manev, E., Johansson, I., Bergeron, V., Foam and thin-liquid-film studies of alkyl glucoside systems (1996) Langmuir, 12, pp. 5271-5278 
504 |a Wang, L., Yoon, R.H., Role of hydrophobic force in the thinning of foam films containing a nonionic surfactant (2006) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 282-283, pp. 84-91 
504 |a Were, L., Hettiarachchy, N.S., Kalapathy, U., Modified soy proteins with improved foaming and water hydration properties (1997) Journal of Food Science, 62, pp. 821-850 
504 |a Wollenweber, C.A.V., Makievski, R., Daniels, R., Adsorption of hydroxypropyl methylcellulose at the liquid/liquid interface and the effect on emulsion stability (2000) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 172, pp. 91-101 
504 |a Yu, M.A., Damodaran, S., Kinetics of destabilization of soy proteins foams (1991) Journal of Agricultural and Food Chemistry, 39, pp. 1563-1567 
504 |a Zylberman, V., Pilosof, A.M.R., Relationship between the glass transition, molecular structure and functional stability of hydrolyzed soy proteins (2002) Amorphous food and pharmaceutical systems, pp. 158-168. , Levine H. (Ed), Royal Society of Chemistry 
520 3 |a The objective of the work was to study the impact of soy protein hydrolysis on foaming and interfacial properties and to analyze the relationship between them. As starting material a sample of commercial soy protein isolate was used (SP) and hydrolysates were produced by an enzymatic reaction, giving hydrolysates from 0.4% to 5.35% degree of hydrolysis (DH). In this contribution we have determined foam overrun (FO), stability against liquid drainage and foam collapse, and the apparent viscosity of foams produced by a whipping method. The surface properties determined were the adsorption isotherm and surface dilatational properties of two hydrolysates (2 and 5.35% DH, H1 and H2 respectively). The hydrolysis of soy proteins increased the surface activity at bulk concentrations where SP adopts a condensed conformation at the monolayer. At concentrations where it adopts a more expanded conformation a very low degree of hydrolysis (H1) also promoted the enhancement of surface activity. However, at 5.35% degree of hydrolysis (H2) the surface activity decreased. Moreover, H2 presented lower surface activity than H1 at every bulk concentration. The hydrolysis increased the elastic component of the dilatational modulus and decreased phase angle of films at bulk concentrations below that corresponding to the collapse of SP monolayer (2% bulk protein). SP hydrolysis increased foam overrun and the stability against drainage that could be related to increased surface activity of protein hydrolysates. However, the collapse of foams was promoted by hydrolysis and could be ascribed to a decrease of the relative viscoelasticity (higher phase angle) of surface films. The results point out that a low degree of hydrolysis (2-5%) would be enough to improve the surface activity of SP, decrease foam drainage and maintaining a considerable viscoelasticity of the surface films to retard foam collapse. © 2009 Elsevier Ltd. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Junta de Andalucía, PO6-AGR-01535 
536 |a Detalles de la financiación: AGL2007-60045 
536 |a Detalles de la financiación: CYTED Ciencia y Tecnología para el Desarrollo, 105PI0274 
536 |a Detalles de la financiación: This research was supported by CYTED through project 105PI0274 The authors also acknowledge the support from CYCYT through grant AGL2007-60045, Junta de Andalucía through grant PO6-AGR-01535, and Universidad de Buenos Aires, Agencia Nacional de Promoción Científica y Tecnológica and Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina. 
593 |a Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
593 |a Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/Prof. Garcia Gonzalez, 1, 41012 Seville, Spain 
690 1 0 |a AIR-WATER INTERFACE 
690 1 0 |a DILATATIONAL RHEOLOGY 
690 1 0 |a FOAM 
690 1 0 |a HYDROLYSATES 
690 1 0 |a SOY PROTEIN 
690 1 0 |a SURFACE PRESSURE 
690 1 0 |a GLYCINE MAX 
700 1 |a Carrera Sánchez, C. 
700 1 |a Rodríguez Patino, J.M. 
700 1 |a Pilosof, A.M.R. 
773 0 |d 2009  |g v. 23  |h pp. 2149-2157  |k n. 8  |p Food Hydrocolloids  |x 0268005X  |w (AR-BaUEN)CENRE-4766  |t Food Hydrocolloids 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-70149113195&doi=10.1016%2fj.foodhyd.2009.03.015&partnerID=40&md5=cf0b2e138e0877a9a077eaeb5bc8625b  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.foodhyd.2009.03.015  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0268005X_v23_n8_p2149_Martinez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0268005X_v23_n8_p2149_Martinez  |y Registro en la Biblioteca Digital 
961 |a paper_0268005X_v23_n8_p2149_Martinez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 69234