The nicotinic receptor of cochlear hair cells: A possible pharmacotherapeutic target?

Mechanosensory hair cells of the organ of Corti transmit information regarding sound to the central nervous system by way of peripheral afferent neurons. In return, the central nervous system provides feedback and modulates the afferent stream of information through efferent neurons. The medial oliv...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Elgoyhen, A.B
Otros Autores: Katz, E., Fuchs, P.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 30493caa a22026177a 4500
001 PAPER-8470
003 AR-BaUEN
005 20230607131853.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-68349137966 
024 7 |2 cas  |a ebselen, 60940-34-3; neramexane, 209185-99-9, 219810-59-0, 457068-92-7; ondansetron, 103639-04-9, 116002-70-1, 99614-01-4; tropisetron, 89565-68-4; Acetylcholine, 51-84-3; Protein Subunits; Receptors, Nicotinic 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BCPCA 
100 1 |a Elgoyhen, A.B. 
245 1 4 |a The nicotinic receptor of cochlear hair cells: A possible pharmacotherapeutic target? 
260 |c 2009 
270 1 0 |m Elgoyhen, A.B.; Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, 1428, Argentina; email: elgoyhen@dna.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Hudspeth, A., How hearing happens (1997) Neuron, 19, pp. 947-950 
504 |a Guinan, J.J., Physiology of olivocochlear efferents (1996) The cochlea, pp. 435-502. , Dallos, Popper, and Fay (Eds), Springer-Verlag, New York 
504 |a Guinan, J.J., Warr, W.B., Norris, B.E., Differential olivocochlear projections from lateral vs medial zones of the superior olivary complex (1983) J Comp Neurol, 221, pp. 358-370 
504 |a Rasmussen, G.L., The olivary peduncle and other fiber projections of the superior olivary complex (1946) J Comp Neurol, 84, pp. 141-219 
504 |a Warr, W., Organization of olivocochlear efferent systems in mammals (1992) The mammalian auditory pathway: neuroanatomy, pp. 410-448. , Douglas W., Popper A., and Fay R. (Eds), Springler-Verlag, New York 
504 |a Dallos, P., Cochlear amplification, outer hair cells and prestin (2008) Curr Opin Neurobiol, 18, pp. 370-376 
504 |a Hudspeth, A.J., Making an effort to listen: mechanical amplification in the ear (2008) Neuron, 59, pp. 530-545 
504 |a Chan, D.K., Hudspeth, A.J., Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro (2005) Nat Neurosci, 8, pp. 149-155 
504 |a Jia, S., He, D.Z., Motility-associated hair-bundle motion in mammalian outer hair cells (2005) Nat Neurosci, 8, pp. 1028-1034 
504 |a Kennedy, H.J., Crawford, A.C., Fettiplace, R., Force generation by mammalian hair bundles supports a role in cochlear amplification (2005) Nature, 433, pp. 880-883 
504 |a Brownell, W., Bader, C., Bertrand, D., de Ribaupierre, Y., Evoked mechanical responses of isolated cochlear hair cells (1985) Science, 227, pp. 194-196 
504 |a Zheng, J., Shen, W., He, D.Z., Long, K.B., Madison, L.D., Dallos, P., Prestin is the motor protein of cochlear outer hair cells (2000) Nature, 405, pp. 149-155 
504 |a Mount, D.B., Romero, M.F., The SLC26 gene family of multifunctional anion exchangers (2004) Pflugers Arch, 447, pp. 710-721 
504 |a Franchini, L.F., Elgoyhen, A.B., Adaptive evolution in mammalian proteins involved in cochlear outer hair cell electromotility (2006) Mol Phylogenet Evol, 41, pp. 622-635 
504 |a Fuchs, P., Synaptic transmission at vertebrate hair cells (1996) Current Opinion in Neurobiol, 6, pp. 514-519 
504 |a Dolan, D.F., Nuttall, A.L., Masked cochlear whole-nerve response intensity functions altered by electrical stimulation of the crossed olivocochlear bundle (1988) J Acoust Soc Am, 83, pp. 1081-1086 
504 |a Kawase, T., Delgutte, B., Liberman, M.C., Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones (1993) J Neurophysiol, 70, pp. 2533-2549 
504 |a Winslow, R.L., Sachs, M.B., Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle (1988) Hear Res, 35, pp. 165-189 
504 |a Delano, P.H., Elgueda, D., Hamame, C.M., Robles, L., Selective attention to visual stimuli reduces cochlear sensitivity in chinchillas (2007) J Neurosci, 27, pp. 4146-4153 
504 |a Oatman, L.C., Effects of visual attention on the intensity of auditory evoked potentials (1976) Exp Neurol, 51, pp. 41-53 
504 |a Liberman, M.C., The olivocochlear efferent bundle and susceptibility of the inner ear to acoustic injury (1991) J Neurophysiol, 65, pp. 123-132 
504 |a Maison, S.F., Liberman, M.C., Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength (2000) J Neurosci, 20, pp. 4701-4707 
504 |a Maison, S.F., Luebke, A.E., Liberman, M.C., Zuo, J., Efferent protection from acoustic injury is mediated via alpha9 nicotinic acetylcholine receptors on outer hair cells (2002) J Neurosci, 22, pp. 10838-10846 
504 |a Rajan, R., Electrical stimulation of the inferior colliculus at low rates protects the cochlea from auditory desensitization (1990) Brain Res, 506, pp. 192-204 
504 |a Taranda, J., Maison, S.F., Ballestero, J.A., Katz, E., Savino, J., Vetter, D.E., A point mutation in the hair cell nicotinic cholinergic receptor prolongs cochlear inhibition and enhances noise protection (2009) PLoS Biol, 7, pp. e18 
504 |a Blanchet, C., Erostegui, C., Sugasawa, M., Dulon, D., Acetylcholine-induced potassium current of guinea pig outer hair cells: its dependence on a calcium influx through nicotinic-like receptors (1996) J Neurosci, 16, pp. 2574-2584 
504 |a Chen, C., LeBlanc, C., Bobbin, R., Differences in cholinergic responses from outer hair cells of rat and guinea pig (1996) Hearing Research, 98, pp. 9-17 
504 |a Doi, T., Ohmori, H., Acetylcholine increases intracellular Ca2+ concentration and hyperpolarizes the guinea-pig outer hair cell (1993) Hearing Res, 67, pp. 179-188 
504 |a Dulon, D., Lenoir, M., Cholinergic responses in developing outer hair cells of the rat cochlea (1996) European J Neurosci, 8, pp. 1945-1952 
504 |a Erostegui, C., Norris, C.H., Bobbin, R.P., In vitro characterization of a cholinergic receptor on outer hair cells (1994) Hearing Res, 74, pp. 135-147 
504 |a Evans, M., Acetylcholine activates two currents in guinea-pig outer hair cells (1996) J Physiol, 491, pp. 563-578 
504 |a Fuchs, P.A., Murrow, B.W., A novel cholinergic receptor mediates inhibition of chick cochlear hair cells (1992) Proc R Soc Lond B, 248, pp. 35-40 
504 |a Fuchs, P.A., Murrow, B.W., Cholinergic inhibition of short (outer) hair cells of the chick's cochlea (1992) J Neurosci, 12, pp. 800-809 
504 |a Housley, G.D., Ashmore, J.F., Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea (1991) Proc R Soc Lond B, 244, pp. 161-167 
504 |a Dulon, D., Luo, L., Zhang, C., Ryan, A.F., Expression of small-conductance calcium-activated potassium channels (SK) in outer hair cells of the rat cochlea (1998) Eur J Neurosci, 10, pp. 907-915 
504 |a Oliver, D., Klocker, N., Schuck, J., Baukrowitz, T., Ruppersberg, J.P., Fakler, B., Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells (2000) Neuron, 26, pp. 595-601 
504 |a Elgoyhen, A.B., Johnson, D.S., Boulter, J., Vetter, D.E., Heinemann, S., α9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells (1994) Cell, 79, pp. 705-715 
504 |a Vetter, D., Lieberman, M., Mann, J., Barhanin, J., Boulter, J., Brown, M., Role of α9 nicotinic ACh receptor subunits in the development and function of cochlear efferent innervation (1999) Neuron, 23, pp. 93-103 
504 |a Katz, E., Verbitsky, M., Rothlin, C., Vetter, D., Heinemann, S., Elgoyhen, A., High calcium permeability and calcium block of the α9 nicotinic acetylcholine receptor (2000) Hearing Res, 141, pp. 117-128 
504 |a Rothlin, C., Verbitsky, M., Katz, E., Elgoyhen, A., The α9 nicotinic acetylcholine receptor shares pharmacological properties with type A γ-aminobutyric acid, glycine and type 3 serotonin receptors (1999) Molec Pharmacol, 55, pp. 248-254 
504 |a Verbitsky, M., Rothlin, C., Katz, E., Elgoyhen, A.B., Mixed nicotinic-muscarinic properties of the a9 nicotinic cholinergic receptor (2000) Neuropharmacology, 39, pp. 2515-2524 
504 |a Glowatzki, E., Wild, K., Brandle, U., Fakler, G., Fakler, B., Zenner, H.P., Cell-specific expression of the alpha 9 n-ACh receptor subunit in auditory hair cells revealed by single-cell RT-PCR (1995) Proc R Soc Lond B, 262, pp. 141-147 
504 |a Morley, B., Li, H., Hiel, H., Drescher, D., Elgoyhen, A.B., Identification of the subunits of the nicotinic cholinergic receptors in the rat cochlea using RT-PCR and in situ hybridization (1998) Molec Brain Res, 53, pp. 78-87 
504 |a McNiven, A.I., Yuhas, W.A., Fuchs, P.A., Ionic dependence and agonist preference of an acetylcholine receptor in hair cells (1996) Auditory Neurosci, 2, pp. 63-77 
504 |a Le Novere, N., Changeux, J., Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells (1995) J Molec Evol, 40, pp. 155-172 
504 |a Le Novere, N., Corringer, P.J., Changeux, J.P., The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences (2002) J Neurobiol, 53, pp. 447-456 
504 |a Elgoyhen, A.B., Vetter, D., Katz, E., Rothlin, C., Heinemann, S., Boulter, J., Alpha 10: A determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells (2001) Proc Natl Acad Sci, USA, 98, pp. 3501-3506 
504 |a Lustig, L.R., Peng, H., Hiel, H., Yamamoto, T., Fuchs, P., Molecular cloning and mapping of the human nicotinic acetylcholine receptor α10 (CHRNA10) (2001) Genomics, 73, pp. 272-283 
504 |a Sgard, F., Charpentier, E., Bertrand, S., Walker, N., Caput, D., Graham, D., A novel human nicotinic receptor subunit, α10, that confers functionality to the α9-subunit (2002) Molec Pharmacol, 61, pp. 150-159 
504 |a Vetter, D.E., Katz, E., Maison, S.F., Taranda, J., Turcan, S., Ballestero, J., The alpha10 nicotinic acetylcholine receptor subunit is required for normal synaptic function and integrity of the olivocochlear system (2007) Proc Natl Acad Sci USA, 104, pp. 20594-20599 
504 |a Plazas, P.V., Katz, E., Gomez-Casati, M.E., Bouzat, C., Elgoyhen, A.B., Stoichiometry of the α9α10 nicotinic cholinergic receptor (2005) J Neurosci, 25, pp. 10905-10912 
504 |a Vio, M.M., Holme, R.H., Hearing loss and tinnitus: 250 million people and a US{ARS}10 billion potential market (2005) Drug Discov Today, 10, pp. 1263-1265 
504 |a Cohen, S.M., Labadie, R.F., Haynes, D.S., Primary care approach to hearing loss: the hidden disability (2005) Ear Nose Throat J, 84 (26), pp. 9-31. , 44 
504 |a Mohr, P.E., Feldman, J.J., Dunbar, J.L., McConkey-Robbins, A., Niparko, J.K., Rittenhouse, R.K., The societal costs of severe to profound hearing loss in the United States (2000) Int J Technol Assess Health Care, 16, pp. 1120-1135 
504 |a Cryns, K., Van Camp, G., Deafness genes and their diagnostic applications (2004) Audiol Neurootol, 9, pp. 2-22 
504 |a Vrijens, K., Van Laer, L., Van Camp, G., Human hereditary hearing impairment: mouse models can help to solve the puzzle (2008) Hum Genet, 124, pp. 325-348 
504 |a Pujol, R., Carlier, E., Cochlear synaptogenesis after sectioning the efferent bundle (1982) Brain Res, 255, pp. 151-154 
504 |a Walsh, E., McGee, J., Does activity in the olivocochlear bundle affect development of the auditory periphery? (1997) Diversity in auditory mechanics, pp. 376-385. , Lewis E., Long G., Lyon R., Narins P., Steele C., and Hecht-Poinar E. (Eds), World Scientific, Singapore 
504 |a Walsh, E., McGee, J., McFadden, S., Liberman, M., Long-term effects of sectioning the olivocochlear bundle in neonatal cats (1998) J Neurosci, 18, pp. 3859-3869 
504 |a Simmons, D.D., Development of the inner ear efferent system across vertebrate species (2002) J Neurobiol, 53, pp. 228-250 
504 |a Glowatzki, E., Fuchs, P., Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea (2000) Science, 288, pp. 2366-2368 
504 |a Katz, E., Elgoyhen, A.B., Gomez-Casati, M.E., Knipper, M., Vetter, D.E., Fuchs, P.A., Developmental regulation of nicotinic synapses on cochlear inner hair cells (2004) J Neurosci, 24, pp. 7814-7820 
504 |a Lim, D.J., Effects of noise and ototoxic drugs at the cellular level in the cochlea: a review (1986) Am J Otolaryngol, 7, pp. 73-99 
504 |a Borg, E., Canlon, B., Engstrom, B., Noise-induced hearing loss. Literature review and experiments in rabbits. Morphological and electrophysiological features, exposure parameters and temporal factors, variability and interactions (1995) Scand Audiol Suppl, 40, pp. 1-147 
504 |a Barney, R., Bohnker, B.K., Hearing thresholds for U.S. Marines: comparison of aviation, combat arms, and other personnel (2006) Aviat Space Environ Med, 77, pp. 53-56 
504 |a Bohnker, B.K., Page, J.C., Rovig, G.W., Betts, L.S., Sack, D.M., Navy Hearing Conservation Program: 1995-1999 retrospective analysis of threshold shifts for age, sex, and officer/enlisted status (2004) Mil Med, 169, pp. 73-76 
504 |a Rovig, G.W., Bohnker, B.K., Page, J.C., Hearing health risk in a population of aircraft carrier flight deck personnel (2004) Mil Med, 169, pp. 429-432 
504 |a Neitzel, R., Meischke, H., Daniell, W.E., Trabeau, M., Somers, S., Seixas, N.S., Development and pilot test of hearing conservation training for construction workers (2008) Am J Ind Med, 51, pp. 120-129 
504 |a Tak, S., Davis, R.R., Calvert, G.M., Exposure to hazardous workplace noise and use of hearing protection devices among US workers-NHANES, 1999-2004 (2009) Am J Ind Med, 52, pp. 358-371 
504 |a Trabeau, M., Neitzel, R., Meischke, H., Daniell, W.E., Seixas, N.S., A comparison of "Train-the-Trainer" and expert training modalities for hearing protection use in construction (2008) Am J Ind Med, 51, pp. 130-137 
504 |a Landen, D., Wilkins, S., Stephenson, M., McWilliams, L., Noise exposure and hearing loss among sand and gravel miners (2004) J Occup Environ Hyg, 1, pp. 532-541 
504 |a Neitzel, R., Yost, M., Task-based assessment of occupational vibration and noise exposures in forestry workers (2002) AIHA J (Fairfax, Va), 63, pp. 617-627 
504 |a Beckett, W.S., Chamberlain, D., Hallman, E., May, J., Hwang, S.A., Gomez, M., Hearing conservation for farmers: source apportionment of occupational and environmental factors contributing to hearing loss (2000) J Occup Environ Med, 42, pp. 806-813 
504 |a Hong, O.S., Kim, M.J., Factors associated with hearing loss among workers of the airline industry in Korea (2001) ORL Head Neck Nurs, 19, pp. 7-13 
504 |a Jaruchinda, P., Thongdeetae, T., Panichkul, S., Hanchumpol, P., Prevalence and an analysis of noise-induced hearing loss in army helicopter pilots and aircraft mechanics (2005) J Med Assoc Thai, 88 (SUPPL. 3), pp. S232-S239 
504 |a Kim, J., Park, H., Ha, E., Jung, T., Paik, N., Yang, S., Combined effects of noise and mixed solvents exposure on the hearing function among workers in the aviation industry (2005) Ind Health, 43, pp. 567-573 
504 |a Landon, P., Breysse, P., Chen, Y., Noise exposures of rail workers at a North American chemical facility (2005) Am J Ind Med, 47, pp. 364-369 
504 |a Seshagiri, B., Exposure to noise on board locomotives (2003) AIHA J (Fairfax, Va), 64, pp. 699-707 
504 |a Kumar, A., Mathur, N.N., Varghese, M., Mohan, D., Singh, J.K., Mahajan, P., Effect of tractor driving on hearing loss in farmers in India (2005) Am J Ind Med, 47, pp. 341-348 
504 |a Solecki, L., Characteristics of annual exposure to noise among private farmers on family farms of mixed-production profile (2006) Ann Agric Environ Med, 13, pp. 113-118 
504 |a Biassoni, E.C., Serra, M.R., Richtert, U., Joekes, S., Yacci, M.R., Carignani, J.A., Recreational noise exposure and its effects on the hearing of adolescents. Part II. Development of hearing disorders (2005) Int J Audiol, 44, pp. 74-85 
504 |a Serra, M.R., Biassoni, E.C., Richter, U., Minoldo, G., Franco, G., Abraham, S., Recreational noise exposure and its effects on the hearing of adolescents. Part I. an Interdisciplinary long-term study (2005) Int J Audiol, 44, pp. 65-73 
504 |a Lynch, E.D., Kil, J., Compounds for the prevention and treatment of noise-induced hearing loss (2005) Drug Discov Today, 10, pp. 1291-1298 
504 |a Henderson, D., Bielefeld, E.C., Harris, K.C., Hu, B.H., The role of oxidative stress in noise-induced hearing loss (2006) Ear Hear, 27, pp. 1-19 
504 |a Kopke, R.D., Jackson, R.L., Coleman, J.K., Liu, J., Bielefeld, E.C., Balough, B.J., NAC for noise: from the bench top to the clinic (2007) Hear Res, 226, pp. 114-125 
504 |a Wang, J., Ruel, J., Ladrech, S., Bonny, C., van de Water, T.R., Puel, J.L., Inhibition of the c-Jun N-terminal kinase-mediated mitochondrial cell death pathway restores auditory function in sound-exposed animals (2007) Mol Pharmacol, 71, pp. 654-666 
504 |a Kil, J., Pierce, C., Tran, H., Gu, R., Lynch, E.D., Ebselen treatment reduces noise induced hearing loss via the mimicry and induction of glutathione peroxidase (2007) Hear Res, 226, pp. 44-51 
504 |a Chen, G.D., Kong, J., Reinhard, K., Fechter, L.D., NMDA receptor blockage protects against permanent noise-induced hearing loss but not its potentiation by carbon monoxide (2001) Hear Res, 154, pp. 108-115 
504 |a Duan, M., Chen, Z., Qiu, J., Ulfendahl, M., Laurell, G., Borg, E., Low-dose, long-term caroverine administration attenuates impulse noise-induced hearing loss in the rat (2006) Acta Otolaryngol, 126, pp. 1140-1147 
504 |a Reiter, E.R., Liberman, M.C., Efferent-mediated protection from acoustic overexposure: relation to slow effects of olivocochlear stimulation (1995) J Neurophysiol, 73, pp. 506-514 
504 |a Kujawa, S.G., Liberman, M.C., Conditioning-related protection from acoustic injury: effects of chronic deefferentation and sham surgery (1997) J Neurophysiol, 78, pp. 3095-3106 
504 |a Handrock, M., Zeisberg, J., The influence of the effect system on adaptation, temporary and permanent threshold shift (1982) Arch Otorhinolaryngol, 234, pp. 191-195 
504 |a Eggermont, J.J., Role of auditory cortex in noise- and drug-induced tinnitus (2008) Am J Audiol, 17, pp. S162-S169 
504 |a Moller, A.R., Tinnitus: presence and future (2007) Prog Brain Res, 166, pp. 3-16 
504 |a Tyler, R., Coelho, C., Tao, P., Ji, H., Noble, W., Gehringer, A., Identifying tinnitus subgroups with cluster analysis (2008) Am J Audiol, 17, pp. S176-S184 
504 |a Mount, C., Downton, C., Alzheimer disease: progress or profit? (2006) Nat Med, 12, pp. 780-784 
504 |a Rammes, G., Schierloh, A., Neramexane (merz pharmaceuticals/forest laboratories) (2006) IDrugs, 9, pp. 128-135 
504 |a Plazas, P.V., Savino, J., Kracun, S., Gomez-Casati, M.E., Katz, E., Parsons, C.G., Inhibition of the alpha9alpha10 nicotinic cholinergic receptor by neramexane, an open channel blocker of N-methyl-d-aspartate receptors (2007) Eur J Pharmacol, 566, pp. 11-19 
504 |a Eggermont, J.J., Tinnitus: neurobiological substrates (2005) Drug Discov Today, 10, pp. 1283-1290 
504 |a Van de Heyning, P., Vermeire, K., Diebl, M., Nopp, P., Anderson, I., De Ridder, D., Incapacitating unilateral tinnitus in single-sided deafness treated by cochlear implantation (2008) Ann Otol Rhinol Laryngol, 117, pp. 645-652 
504 |a Mody, M., Wehner, D.T., Ahlfors, S.P., Auditory word perception in sentence context in reading-disabled children (2008) Neuroreport, 19, pp. 1567-1571 
504 |a Demonet, J.F., Taylor, M.J., Chaix, Y., Developmental dyslexia (2004) Lancet, 363, pp. 1451-1460 
504 |a Ramirez, J., Mann, V., Using auditory-visual speech to probe the basis of noise-impaired consonant-vowel perception in dyslexia and auditory neuropathy (2005) J Acoust Soc Am, 118, pp. 1122-1133 
504 |a Sperling, A.J., Lu, Z.L., Manis, F.R., Seidenberg, M.S., Deficits in perceptual noise exclusion in developmental dyslexia (2005) Nat Neurosci, 8, pp. 862-863 
504 |a Kawase, T., Liberman, M.C., Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones (1993) J Neurophysiol, 70, pp. 2519-2532 
504 |a Micheyl, C., Carbonnel, O., Collet, L., Medial olivocochlear system and loudness adaptation: differences between musicians and non-musicians (1995) Brain Cogn, 29, pp. 127-136 
504 |a Micheyl, C., Collet, L., Involvement of the olivocochlear bundle in the detection of tones in noise (1996) J Acoust Soc Am, 99, pp. 1604-1610 
504 |a Micheyl, C., Khalfa, S., Perrot, X., Collet, L., Difference in cochlear efferent activity between musicians and non-musicians (1997) Neuroreport, 8, pp. 1047-1050 
504 |a Micheyl, C., Perrot, X., Collet, L., Relationship between auditory intensity discrimination in noise and olivocochlear efferent system activity in humans (1997) Behav Neurosci, 111, pp. 801-807 
504 |a Giraud, A.L., Garnier, S., Micheyl, C., Lina, G., Chays, A., Chery-Croze, S., Auditory efferents involved in speech-in-noise intelligibility (1997) Neuroreport, 8, pp. 1779-1783 
504 |a Kumar, U.A., Vanaja, C.S., Functioning of olivocochlear bundle and speech perception in noise (2004) Ear Hear, 25, pp. 142-146 
504 |a Veuillet, E., Bazin, F., Collet, L., Objective evidence of peripheral auditory disorders in learning-impaired children (1999) J Audiol Med, 8, pp. 18-29 
504 |a Brashears, S.M., Morlet, T.G., Berlin, C.I., Hood, L.J., Olivocochlear efferent suppression in classical musicians (2003) J Am Acad Audiol, 14, pp. 314-324 
504 |a Veuillet, E., Magnan, A., Ecalle, J., Thai-Van, H., Collet, L., Auditory processing disorder in children with reading disabilities: effect of audiovisual training (2007) Brain, 130, pp. 2915-2928 
504 |a de Boer, J., Thornton, A.R., Neural correlates of perceptual learning in the auditory brainstem: efferent activity predicts and reflects improvement at a speech-in-noise discrimination task (2008) J Neurosci, 28, pp. 4929-4937 
504 |a Lindstrom, J.M., Nicotinic acetylcholine receptors of muscles and nerves: comparison of their structures, functional roles, and vulnerability to pathology (2003) Ann N Y Acad Sci, 998, pp. 41-52 
504 |a Gotti, C., Riganti, L., Vailati, S., Clementi, F., Brain neuronal nicotinic receptors as new targets for drug discovery (2006) Curr Pharm Des, 12, pp. 407-428 
504 |a Hogg, R.C., Buisson, B., Bertrand, D., Allosteric modulation of ligand-gated ion channels (2005) Biochem Pharmacol, 70, pp. 1267-1276 
504 |a White, H.K., Levin, E.D., Chronic transdermal nicotine patch treatment effects on cognitive performance in age-associated memory impairment (2004) Psychopharmacology (Berl), 171, pp. 465-471 
504 |a Smith, R.C., Singh, A., Infante, M., Khandat, A., Kloos, A., Effects of cigarette smoking and nicotine nasal spray on psychiatric symptoms and cognition in schizophrenia (2002) Neuropsychopharmacology, 27, pp. 479-497 
504 |a Albuquerque, E.X., Santos, M.D., Alkondon, M., Pereira, E.F., Maelicke, A., Modulation of nicotinic receptor activity in the central nervous system: a novel approach to the treatment of Alzheimer disease (2001) Alzheimer Dis Assoc Disord, 15 (SUPPL. 1), pp. S19-S25 
504 |a Bertrand, D., Gopalakrishnan, M., Allosteric modulation of nicotinic acetylcholine receptors (2007) Biochem Pharmacol, 74, pp. 1155-1163 
504 |a Hurst, R.S., Hajos, M., Raggenbass, M., Wall, T.M., Higdon, N.R., Lawson, J.A., A novel positive allosteric modulator of the alpha7 neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization (2005) J Neurosci, 25, pp. 4396-4405 
504 |a Zorrilla de San Martin, J., Ballestero, J., Katz, E., Elgoyhen, A.B., Fuchs, P.A., Ryanodine is a positive modulator of acetylcholine receptor gating in cochlear hair cells (2007) J Assoc Res Otolaryngol, 8, pp. 474-483 
504 |a Rothlin, C.V., Lioudyno, M.I., Silbering, A.F., Plazas, P.V., Casati, M.E., Katz, E., Direct interaction of serotonin type 3 receptor ligands with recombinant and native alpha 9 alpha 10-containing nicotinic cholinergic receptors (2003) Mol Pharmacol, 63, pp. 1067-1074 
520 3 |a Mechanosensory hair cells of the organ of Corti transmit information regarding sound to the central nervous system by way of peripheral afferent neurons. In return, the central nervous system provides feedback and modulates the afferent stream of information through efferent neurons. The medial olivocochlear efferent system makes direct synaptic contacts with outer hair cells and inhibits amplification brought about by the active mechanical process inherent to these cells. This feedback system offers the potential to improve the detection of signals in background noise, to selectively attend to particular signals, and to protect the periphery from damage caused by overly loud sounds. Acetylcholine released at the synapse between efferent terminals and outer hair cells activates a peculiar nicotinic cholinergic receptor subtype, the α9α10 receptor. At present no pharmacotherapeutic approaches have been designed that target this cholinergic receptor to treat pathologies of the auditory system. The potential use of α9α10 selective drugs in conditions such as noise-induced hearing loss, tinnitus and auditory processing disorders is discussed. © 2009 Elsevier Inc. All rights reserved.  |l eng 
536 |a Detalles de la financiación: National Institute on Deafness and Other Communication Disorders, R01DC001508 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Howard Hughes Medical Institute 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: ABE, EK and PAF are supported by the National Institutes of Deafness and other Communication Disorders (NIDCD) Grant R01DC001508. ABE is supported by an International Research Scholar Grant from the Howard Hughes Medical Institute, the Tinnitus Research Initiative, Research Grants from ANPCyT (Argentina) and the University of Buenos Aires (Argentina). EK is supported by Research Grants from the University of Buenos Aires (Argentina) and CONICET (Argentina). 
593 |a Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, 1428, Argentina 
593 |a Departamento de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, 1121, Argentina 
593 |a Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina 
593 |a Department of Otolaryngology, Head and Neck Surgery, the Center for Hearing and Balance, Center for Sensory Biology, Baltimore, MD 21205-2195, United States 
690 1 0 |a COCHLEA 
690 1 0 |a EFFERENT FEEDBACK 
690 1 0 |a NICOTINIC CHOLINERGIC RECEPTORS 
690 1 0 |a NOISE TRAUMA 
690 1 0 |a TINNITUS 
690 1 0 |a AM 111 
690 1 0 |a CHOLINESTERASE INHIBITOR 
690 1 0 |a EBSELEN 
690 1 0 |a NERAMEXANE 
690 1 0 |a NICOTINIC RECEPTOR 
690 1 0 |a NICOTINIC RECEPTOR ALPHA9ALPHA10 
690 1 0 |a NICOTINIC RECEPTOR ALPHA9ALPHA10 AGONIST 
690 1 0 |a NICOTINIC RECEPTOR ALPHA9ALPHA10 ANTAGONIST 
690 1 0 |a NICOTINIC RECEPTOR ALPHA9ALPHA10 MODULATOR 
690 1 0 |a ONDANSETRON 
690 1 0 |a PNU 120596 
690 1 0 |a TROPISETRON 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a CLINICAL TRIAL 
690 1 0 |a COCHLEA 
690 1 0 |a CORTI ORGAN 
690 1 0 |a DRUG DESIGN 
690 1 0 |a DRUG EFFICACY 
690 1 0 |a DRUG SAFETY 
690 1 0 |a EFFERENT NERVE 
690 1 0 |a FEEDBACK SYSTEM 
690 1 0 |a HAIR CELL 
690 1 0 |a HEARING LOSS 
690 1 0 |a HUMAN 
690 1 0 |a HYPOACUSIS 
690 1 0 |a MENIERE DISEASE 
690 1 0 |a NEUROTRANSMITTER RELEASE 
690 1 0 |a NONHUMAN 
690 1 0 |a OTITIS MEDIA 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a PROTEIN TARGETING 
690 1 0 |a RECEPTOR BLOCKING 
690 1 0 |a REVIEW 
690 1 0 |a SYNAPTIC TRANSMISSION 
690 1 0 |a TINNITUS 
690 1 0 |a ACETYLCHOLINE 
690 1 0 |a ANIMALS 
690 1 0 |a AUDITORY PERCEPTUAL DISORDERS 
690 1 0 |a COCHLEA 
690 1 0 |a DYSLEXIA 
690 1 0 |a HAIR CELLS, AUDITORY 
690 1 0 |a HEARING LOSS 
690 1 0 |a HUMANS 
690 1 0 |a NOISE 
690 1 0 |a OLIVARY NUCLEUS 
690 1 0 |a PROTEIN SUBUNITS 
690 1 0 |a RECEPTORS, NICOTINIC 
690 1 0 |a SYNAPTIC TRANSMISSION 
690 1 0 |a TINNITUS 
653 0 0 |a am 111, Auris; pnu 120596 
700 1 |a Katz, E. 
700 1 |a Fuchs, P.A. 
773 0 |d 2009  |g v. 78  |h pp. 712-719  |k n. 7  |p Biochem. Pharmacol.  |x 00062952  |w (AR-BaUEN)CENRE-914  |t Biochemical Pharmacology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-68349137966&doi=10.1016%2fj.bcp.2009.05.023&partnerID=40&md5=516367fd0730813b1e10cc1394ed38d5  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.bcp.2009.05.023  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00062952_v78_n7_p712_Elgoyhen  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00062952_v78_n7_p712_Elgoyhen  |y Registro en la Biblioteca Digital 
961 |a paper_00062952_v78_n7_p712_Elgoyhen  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 69423