About the activation energies of the main and secondary relaxations in cured styrene butadiene rubber

This article studies the influence of the network structure on the activation energies of the a and b relaxations in vulcanized styrene butadiene rubber, SBR. A cure system based on sulphur and TBBS (N-t-butyl-2-benzothiazole sulfenamide) was used in the formulation of several compounds cured at 433...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ghilarducci, Ada Albertina
Otros Autores: Salva, Horacio Ramón, Marzocca, Angel José
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:This article studies the influence of the network structure on the activation energies of the a and b relaxations in vulcanized styrene butadiene rubber, SBR. A cure system based on sulphur and TBBS (N-t-butyl-2-benzothiazole sulfenamide) was used in the formulation of several compounds cured at 433 K. The activation energies were evaluated from internal friction (loss tangent) data of the compounds using an automated subresonant forced pendulum in a wide frequency range and between 80 K and 273 K. The internal friction data of the samples reveal two transitions, α and β, characterized by the temperatures Tα and Tβ, due to the glass transition and the phenyl group rotation of the copolymer, respectively. Although Tα increases at higher crosslink density, it shows also a dependence with the amount of polysulphide and monosulphide linkages present in the samples. The highest activation energy for this process is obtained for the samples with high crosslink density and 30% of monosulphides in this structure. In the case of the β-relaxation, there is a pronounced change in the activation energy between the uncured and the cured samples. The type of structure formed during vulcanization has an important effect in the activation energy of the segmental mode-process. In the case of the β-process, the cis-trans isomerization that takes place during vulcanization in the butadiene part of the SBR, might be the cause of conformational changes in the surrounding of the phenyl rings that affect the energy barrier associated to the phenyl rotation. © 2009 Wiley Periodicals, Inc.
Bibliografía:(1994) The Science and Technology of Rubber, , Mark, J, Erman, B, Eirich, F. R, Eds, Academic Press: San Diego
Salgueiro, W., Marzocca, A.J., Somoza, A., Consolati, G., Cerveney, S., Quasso, F., Goyanes, S., (2004) Polymer, 45, p. 6037
Marzocca, A.J., Goyanes, S.N., (2004) J Appl Polym Sci, 91, p. 2601
Marzocca, A.J., Mansilla, M.A., (2006) J Appl Polym Sci, 101, p. 35
Marzocca, A.J., Mansilla, M.A., (2007) J Appl Polym Sci, 103, p. 1105
Marzocca, A. J. Eur Polym J 2007, 43, 2682; Aprem, A.S., Kuruvilla, J., Thomas, S., (2005) Rubber Chem Technol, 78, p. 458
George, S.C., Knörgen, M., Thomas, S., (1999) J Membr Sci, 163, p. 1
Pellicioli, L., Mowdood, S.K., Negroni, F., Parker, D.D., Koenig, J.L., (2002) Rubber Chem Technol, 75, p. 65
Bartenev, G.M., Zelenev, J.V., (1964) Phys Non-Cryst Solids, 15, p. 294
Cerveny, S.; Ghilarducci, A.; Salva, H.; Marzocca, A. J. Polymer 2000, 41, 2227; D'Anna, G., Benoit, W., (1990) Rev Sci Instrum, 61, p. 3821
Robertson, R.E., (1992) Computational Modelling of Polymers, p. 297. , Bicerano, J, Ed, Marcel Dekker: New York
Gibbs, J.H., Di Marzio, E.A., (1958) J Chem Phys, 28, p. 373
Adam, G., Gibbs, J.H., (1965) J Chem Phys, 43, p. 139
Gotze, W., Sjogren, L., (1992) Rep Prog Phys, 55, p. 241
Ngai, K.L., (1979) Comments Solid State Phys, 9, p. 127
Ngai, K.L., (1980) Comments Solid State Phys, 9, p. 141
Metatla, M., Soldera, A., (2007) Macromolecules, 40, p. 9680
Vogel, H., (1921) Phys Z, 22, p. 645
Fulcher, G.S., (1926) J Am Ceram Soc, 8, p. 339
Tamman, V.G., Hesse, W., (1926) Z Anorg Allg Chem, 156, p. 245
Yano, O., Wada, Y., (1971) J Polym Sci Part A-2, 9, p. 669
Reich, S., Eisenberg, A., (1972) J Polym Sci Part A-2, 10, p. 1397
Tonelli, A., (1973) Macromolecules, 6, p. 682
Hagele, P.C., Beck, L., (1977) Macromolecules, 10, p. 213
Khare, R., Paulaitis, M.E., (1995) Macromolecules, 28, p. 4495
Bishop, W. A. J Polym Sci 1961, 55, 827
ISSN:00218995
DOI:10.1002/app.30332