Photophysical properties of blue-emitting silicon nanoparticles

Silicon nanoparticles with strong blue photoluminescence were synthesized by electrochemical etching of silicon wafers and ultrasonically removed under N 2 atmosphere in organic solvents to produce colloids. Thermal treatment leads to the formation of colloidal Si particles of 3 ± 1 nm diameter, whi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Llansola Portolés, M.J
Otros Autores: Nieto, F.R, Soria, D.B, Amalvy, J.I, Peruzzo, P.J, Mártire, D.O, Kotler, M., Holub, O., Gonzalez, M.C
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15253caa a22015497a 4500
001 PAPER-8583
003 AR-BaUEN
005 20230518203823.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-68749107095 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Llansola Portolés, M.J. 
245 1 0 |a Photophysical properties of blue-emitting silicon nanoparticles 
260 |c 2009 
270 1 0 |m Gonzalez, M. C.; Instituto de Investigaciones Físicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de la Plata, c.c. 16, suc. 4, La Plata, Argentina; email: mcgonzalez.quim@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Rosso-Vasic, M., Spruijt, E., Van Lagen, B., De Cola, L., Zuilhof, H., Alkyl-functionalized oxide-free silicon nanoparticles: Synthesis and optical properties (2008) Small, 4, pp. 1835-1841 
504 |a Wolkin, M.V., Jorne, J., Fauchet, P.M., Allan, G., Delerue, C., Electronic states and luminescence in porous silicon quantum dots: The role of oxygen (1999) Phys. Rev. Lett, 82, pp. 197-200 
504 |a Belomoin, G., Therrien, J., Nayfeh, M., Oxide and hydrogen capped ultrasmall blue luminescent Si nanoparticles (2000) Appl. Phys. Lett, 77, pp. 779-781 
504 |a Choi, J., Wang, N.S., Reipa, V., Photoassisted tuning of silicon nanocrystal photoluminescence (2007) Langmuir, 23, pp. 3388-3394 
504 |a Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Weiss, S., Quantum dots for live cells, in vivo imaging, and diagnostics (2005) Science, 307, pp. 538-544 
504 |a Canham, L., Gaining light from silicon (2000) Nature, 408, pp. 411-412 
504 |a Bley, R.A., Kauzlarich, S.M., Davis, J.E., Lee, H.W.H., Characterization of silicon nanoparticles prepared from porous silicon (1996) Chem. Mater, 8, pp. 1881-1888 
504 |a Rogozhina, E.V., Eckhoff, D.A., Gratton, E., Braun, P.V., Carboxyl functionalization of ultrasmall luminescent silicon nanoparticles through thermal hydrosilylation (2006) J. Mater. Chem, 16, pp. 1421-1430 
504 |a Rao, S., Sutin, J., Clegg, R., Gratton, E., Nayfeh, M.H., Habbal, S., Tsolakidis, A., Martin, R.M., Excited states of tetrahedral single-core Si29 nanoparticles (2004) Phys. Rev. B, 69, p. 205319 
504 |a Liu, S.M., Luminescent silicon nanoparticles formed in solution (2008) J. Nanosci. Nanotechnol, 8, pp. 1110-1125 
504 |a Hua, F., Erogbogbo, F., Swihart, M.T., Ruckenstein, E., Organically capped silicon nanoparticles with blue photoluminescence prepared by hydrosilylation followed by oxidation (2006) Langmuir, 22, pp. 4363-4370 
504 |a Sankaran, R.M., Holunga, D., Flagan, R.C., Giapis, K.P., Synthesis of blue luminescent Si nanoparticles using atmospheric-pressure microdis-charges (2005) Nano Lett, 5, pp. 537-541 
504 |a Zhang, X., Neiner, D., Wang, S., Louie, A.Y., Kauzlarich, S.M., A new solution route to hydrogen-terminated silicon nanoparticles: Synthesis, functionalization and water stability (2007) Nanotechnoloey, 18, p. 095601 
504 |a Pradhan, S., Chen, S., Zou, J., Kauzlarich, S.M., Photoconductivity of Langmuir-Blodgett monolayers of silicon nanoparticles (2008) J. Phys. Chem. C, 112, pp. 13292-13298 
504 |a Kanemitsu, Y., Efficient light emission from crystalline and amorphous silicon nanostructures (2002) J. Lumin, 100, pp. 209-217 
504 |a Mitas, L., Therrien, J., Twesten, R., Belomoin, G., Nayfeh, M.H., Effect of surface reconstruction on the structural prototypes of ultrasmall ultrabright Si29 nanoparticles (2001) Appl. Phys. Lett, 78, pp. 1918-1920 
504 |a Zhou, Z., Brus, L., Friesner, R., Electronic structure and luminescence of 1.1- and 1.4-nm silicon nanocrystals: Oxide shell versus hydrogen passivation (2003) Nano Lett, 3, pp. 163-167 
504 |a Yamani, Z., Thompson, W.H., AbuHassan, L., Nayfeh, M.H., Ideal anodization of silicon (1997) Appl. Phys. Lett, 70, pp. 3404-3406 
504 |a Valenta, J.; Janda, P.; Dohnalova, K.; Nizna?nsky, D.; Vacha, F.; Linnros, J. Colloidal suspensions of silicon nanocrystals: from single nanocrystals to photonic structures. Opt. Mater. 2005, 27, 1046-1049; Li, X., He, Y., Swihart, M.T., Surface functionalization of silicon nanoparticles produced by laser-driven pyrolysis of silane followed by HF-HNO3 etching (2004) Langmuir, 20, pp. 4720-4727 
504 |a Hua, F., Erogbogbo, F., Swihart, M., Ruckenstein, T., Efficient surface grafting of luminescent silicon quantum dots by photoinitiated hydrosilylation (2005) Langmuir, 21, pp. 6054-6062 
504 |a Hamal, S., Hirayama, F., Actinometric Determination of Absolute Fluorescence Quantum Yields (1983) J. Phys. Chem, 87, pp. 83-89 
504 |a Scurlock, R.D., Ogilby, P.R., Singlet molecular oxygen (1ΔO 2) formation upon irradiation of an oxygen (3Σ g -O 2)-organic molecule charge -transfer absorption band (1989) J. Phys. Chem, 93, pp. 5493-5500 
504 |a Mueller, J.D., Gratton, E., High -Pressure Fluorescence Correlation Spectroscopy (2003) Biophys. J, 85, pp. 2711-2719 
504 |a Valeur, B., Molecular Fluorescence. Principles and applications (2002) Angew. Chem., Int. Ed. Engl, 41, pp. 3063-3064 
504 |a San Roman, E., Gonzalez, M.C., Photochemistry of aqueous solutions of triphenyltetrazolium chloride (1989) J. Phys. Chem, 93, pp. 3536-3540 
504 |a Kravetz, V.G., Meier, C., Konjhodzic, D., Lorke, A., Infrared properties of silicon nanoparticles (2005) J. Appl. Phys, 97, p. 084306 
504 |a Li, Z.F., Swihart, M.T., Ruckenstein, E., Luminescent silicon nanoparticles capped by conductive polyaniline through the self-assembly method (2004) Langmuir, 20, pp. 1963-1971 
504 |a Bateman, J.E., Horrocks, B.R., Houlton, A., Reactions of water and methanol at hydrogen-terminated silicon surfaces studied by transmission FTIR (1997) J. Chem. Soc, 93, pp. 2427-2431 
504 |a Sweryda-Krawiec, B., Cassagneau, T., Fendler, J.H., Modification of silicon nanocrystallites by alcohols (1999) J.Phys. Chem. B, 103, pp. 9524-9529 
504 |a Kim, N.Y., Laibinis, P.E., Improved polypyrrole/silicon junctions by surfacial modification of hydrogen-terminated silicon using organolithium reagents (1999) J. Am. Chem. Soc, 121, pp. 7162-7163 
504 |a Ruiz, A.E., Caregnato, P., Arce, V.B., Schiavoni, M.M., Mora, V.C., Gonzalez, M.C., Allegretti, P.E., Mártire, D.O., Synthesis and characterization of butoxylated silica nanoparticles. reaction with benzophe-none triplet states (2007) J. Phys. Chem. C, 111, pp. 7623-7628 
504 |a Ma, L.B., Ji, A.L., Liu, C., Wang, Y.Q., Cao, Z.X., Low temperature growth of amorphous Si nanoparticles in oxide matrix for efficient visible photoluminescence (2004) J. Vac. Sci. Technol., B, 22, pp. 2654-2657 
504 |a Sun, Q.-Y.; Louis, C. P. M.; de Smet; Van Lagen, B.; Giesbers, M.; Thne, P. C.; Van Engelenburg, J.; de Wolf, F. A.; Zuilhof, H.; Sudhlter, E.J. R. Covalently attached monolayers on crystalline hydrogen-terminated silicon: extremely mild attachment by visible light. J. Am. Chem. Soc. 2005, 127, 2514-2523; Larson, G.L., Arkles, B., Anderson, R., (1987) Silicon compounds,regis-terand review, , Petrarch Systems 
504 |a Chung, T.H., Effects of process parameters on the properties of silicon oxide films using plasma enhanced chemical vapor deposition with tetramethoxysilane (2009) Curr. Appl. Phys, 9, pp. 598-604 
504 |a Jum, M.A., Feng, Q.Y., Shi, L.H., Xu, J., Preliminary study on pyrolysis of polymethylsilsesquioxane by FT-IR and XPS (2002) Chin. Chem. Lett, 13, pp. 75-78 
504 |a Soraru, G.D., Andrea, G.D., Glisenti, A., XPS characterization of gel-derived silicon oxycarbide glasses (1996) Mater. Lett, 27, pp. 1-5 
504 |a Nguyen, T.P., Lefrant, S., XPS study of SiO thin films and SiO-metal interfaces (1989) J. Phys.: Condens. Matter, pp. 5197-5204 
504 |a Dobrovolskas, D., Mickevicius, J., Tamulaitis, G., Reipa, V., Photoluminescence of Si nanocrystals under selective excitation (2009) J. Phys. Chem. Solids, 70, pp. 439-443 
504 |a Holmes, J.D., Ziegler, K.J., Doty, R.C., Pell, L.E., Johnston, K.P., Korgel, B.A., Highly luminescent silicon nanocrystals with discrete optical transitions (2001) J. Am. Chem. Soc, 123, pp. 3743-3748 
504 |a Landes, C.F., Link, S., Mohamed, M.B., Nikoobakht, B., El-Sayed, M.A., Some properties of spherical and rod-shaped semiconductor and metal nanocrystals (2002) Pure Appl. Chem, 74, pp. 1675-1692 
504 |a Lakowicz, J. R.; Gryczynski, I.; Gryczynski, Z.; Murphy, C. J. Luminescence spectral properties of CdS nanoparticles. J. Phys. Chem. B 1999, 103, 7613-7620; Tsybeskov, L., Vandeshev, J.V., Fauchet, P.M., Blue emission in porous silicon: Oxygen-related photoluminescence (1994) Phys. Rev. B, 49, pp. R7821 
504 |a Akcakir, O., Therrien, J., Belomoin, G., Barry, N., Muller, J.D., Gratton, E., Nayfeh, M., Detection of luminescent single ultrasmall silicon nanoparticles using fluctuation correlation spectroscopy (2000) Appl. Phys. Lett, 76, pp. 1857-1859 
504 |a Chirico, G., Bettati, S., Mozzarelli, A., Chen, Y., Mueller, J.D., Gratton, E., Molecular heterogeneity of O-acetylserine sulfhydrylase by two-photon excited fluorescence fluctuation spectroscopy (2001) Biophys. J, 80, pp. 1973-1985 
504 |a Lebret, V., Raehm, L., Durand, J., Smäihi, M., Gérardin, C., Nerambourg, N., Werts, M.H.V., Blanchard-Desce, M., Synthesis and characterization of fluorescently doped mesoporous nanoparticles for two-photon excitation (2008) Chem. Mater, 20, pp. 2174-2183 
504 |a Gratton, E, , http://www.fluorescence-foundation.org/lectures/genova2007/lecture6.pdf, accessed April 2009 
504 |a Xu, C., Webb, W.W., Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm (1996) J. Opt. Soc. Am. B, 13, pp. 481-491 
520 3 |a Silicon nanoparticles with strong blue photoluminescence were synthesized by electrochemical etching of silicon wafers and ultrasonically removed under N 2 atmosphere in organic solvents to produce colloids. Thermal treatment leads to the formation of colloidal Si particles of 3 ± 1 nm diameter, which upon excitation with 340-380 nm light exhibited room temperature luminescence in the range from 400 to 500 nm. The emission and the one- and two-photon excitation spectra of the particles are not sensitive to surface functionalization with methyl 2-methylprop-2-enoate. However, the derivatized particles show higher emission quantum yields in air-saturated suspensions (44%) than the underivatized particles (27%), as well as higher stability of its dispersions. FTIR and XPS spectra indicate a significant surface oxidation of the particles. The Si:O:C ratio at the surface of the derivatized particles estimated from XPS is Si 3O 6(C 5O 2H y) 1, with y =7-8. Vibronic spacing is observed in both the emission and excitation spectra. The information obtained from one-photon excitation experiments (emission and excitation spectra, photoluminescence quantum yields, luminescence decay lifetimes, and anisotropy correlation lifetimes), as well as from two-photon excitation fluorescence correlation spectroscopy (brightness and diffusion coefficients) and TEM, indicate that the blue-emitting particles are monodisperse and ball-shaped. Particle size clearly determines the emission and excitation spectral region, as expected from quantum confinement, but the presence and extent of Si-O species on the silicon networks seem crucial for determining the spectrum features and intensity of emission. The nanoparticles could hold great potential as quantum dots for applications as luminescence sensors in biology and environmental science. © 2009 American Chemical Society.  |l eng 
593 |a Instituto de Investigaciones Físicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de la Plata, c.c. 16, suc. 4, La Plata, Argentina 
593 |a CEQUINOR, FCE, Universidad Nacional de La Plata, Argentina 
593 |a Departamento de Quíimica, Biológica, FCEyN, Universidad de Buenos Aires, 4 Piso, Pabellón II, Buenos Aires, Argentina 
593 |a Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine (UCI), Irvine, CA 92697-2715, United States 
690 1 0 |a BLUE PHOTOLUMINESCENCE 
690 1 0 |a BLUE-EMITTING 
690 1 0 |a DIFFUSION COEFFICIENTS 
690 1 0 |a EMISSION QUANTUM YIELD 
690 1 0 |a ENVIRONMENTAL SCIENCE 
690 1 0 |a EXCITATION SPECTRUM 
690 1 0 |a FTIR 
690 1 0 |a INTENSITY OF EMISSION 
690 1 0 |a LUMINESCENCE DECAYS 
690 1 0 |a LUMINESCENCE SENSOR 
690 1 0 |a MONODISPERSE 
690 1 0 |a ONE-PHOTON EXCITATION 
690 1 0 |a PHOTOLUMINESCENCE QUANTUM YIELDS 
690 1 0 |a PHOTOPHYSICAL PROPERTIES 
690 1 0 |a QUANTUM DOT 
690 1 0 |a ROOM TEMPERATURE LUMINESCENCE 
690 1 0 |a SI-PARTICLE 
690 1 0 |a SIGNIFICANT SURFACES 
690 1 0 |a SILICON NANOPARTICLES 
690 1 0 |a SILICON NETWORKS 
690 1 0 |a SPECTRAL REGION 
690 1 0 |a SPECTRUM FEATURES 
690 1 0 |a SURFACE FUNCTIONALIZATION 
690 1 0 |a TEM 
690 1 0 |a THERMAL TREATMENT 
690 1 0 |a TWO PHOTON EXCITATION FLUORESCENCE 
690 1 0 |a TWO-PHOTON EXCITATIONS 
690 1 0 |a XPS 
690 1 0 |a XPS SPECTRA 
690 1 0 |a BIOLOGY 
690 1 0 |a EMISSION SPECTROSCOPY 
690 1 0 |a EXCITED STATES 
690 1 0 |a FLUORESCENCE SPECTROSCOPY 
690 1 0 |a FOURIER TRANSFORM INFRARED SPECTROSCOPY 
690 1 0 |a HEAT TREATMENT 
690 1 0 |a LIGHT 
690 1 0 |a LIGHT EMISSION 
690 1 0 |a NANOPARTICLES 
690 1 0 |a ORGANIC SOLVENTS 
690 1 0 |a PHOTOLUMINESCENCE 
690 1 0 |a PHOTON CORRELATION SPECTROSCOPY 
690 1 0 |a PHOTONS 
690 1 0 |a SEMICONDUCTING SILICON COMPOUNDS 
690 1 0 |a SEMICONDUCTOR QUANTUM DOTS 
690 1 0 |a SILICON 
690 1 0 |a SUSPENSIONS (FLUIDS) 
690 1 0 |a X RAY PHOTOELECTRON SPECTROSCOPY 
690 1 0 |a SILICON WAFERS 
700 1 |a Nieto, F.R. 
700 1 |a Soria, D.B. 
700 1 |a Amalvy, J.I. 
700 1 |a Peruzzo, P.J. 
700 1 |a Mártire, D.O. 
700 1 |a Kotler, M. 
700 1 |a Holub, O. 
700 1 |a Gonzalez, M.C. 
773 0 |d 2009  |g v. 113  |h pp. 13694-13702  |k n. 31  |p J. Phys. Chem. C  |x 19327447  |t Journal of Physical Chemistry C 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-68749107095&doi=10.1021%2fjp903727n&partnerID=40&md5=fe7e47ca13673e54c81964ffde29fdab  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/jp903727n  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19327447_v113_n31_p13694_LlansolaPortoles  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v113_n31_p13694_LlansolaPortoles  |y Registro en la Biblioteca Digital 
961 |a paper_19327447_v113_n31_p13694_LlansolaPortoles  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 69536