Crystalline ce(III)-la(III) double basic carbonates: A chemical shortcut to obtain nanometric la(III)-doped ceria

The controlled decomposition of crystalline Ce 1-xLa x(OH)CO 3 samples to give nanocrystalline Ce 1-XLa xO 2δ solid solutions is studied as a function of temperature and La(III) content. The hexagonal basic carbonates, related to the mineral bastnaesite, are shown to be suitable precursors for the o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Jobbágy, M.
Otros Autores: Sorbello, C., Sileo, E.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09485caa a22012617a 4500
001 PAPER-8704
003 AR-BaUEN
005 20230518203831.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-67649246551 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Jobbágy, M. 
245 1 0 |a Crystalline ce(III)-la(III) double basic carbonates: A chemical shortcut to obtain nanometric la(III)-doped ceria 
260 |c 2009 
270 1 0 |m Jobbágy, M.; DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, C1428EHA-Buenos Aires, Argentina; email: jobbag@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Trovarelli, A., (1996) Catal. Rev.-Sci. Eng, 38, p. 439 
504 |a Hennings, U., Reimert, R., (2007) Appl. Catal., A, 325, p. 41 
504 |a Wilkes, M.F., Hayden, P., Catal, B.A.K.J., (2003), 219, p. 286; Wilkes, M.F., Hayden, P., Bhattacharya, A.K., (2003) J. Catal, 219, p. 295 
504 |a Wilkes, M.F., Hayden, P., Catal, B.A.K.J., (2003), 219, p. 305; Wilkes, M.F., Hayden, P., Bhattacharya, A.K., (2003) Appl. Surf. Sci, 206, p. 12 
504 |a O'Connell, M., Morris, M.A., (2000) Catal. Today, 59, p. 387 
504 |a O'Neill, W.M., Morris, M.A., (1999) Chem. Phys. Lett, 305, p. 389 
504 |a Campbell, K.D., Zhang, H., Lunsford, J.H., (1988) J. Phys. Chem, 92, p. 750 
504 |a Sahibzada, M., Steele, B.C.H., Zheng, K., Rudkin, R.A., Metcalfe, I.S., (1997) Catal. Today, 38, p. 459 
504 |a Mogensen, M., Sammes, N.M., Tompsett, G.A., (2000) Solid State Ionics, 129, p. 63 
504 |a Weckhuysen, B.M., Rosynek, M.P., Lunsford, J.H., (1999) Phvs. Chem. Chem. Phys, 1, p. 3157 
504 |a Fernandez-Garcia, M., Martinez-Arias, A., Hanson, J.C., Rodriguez, J.A., (2004) Chem. Rev, 104, p. 4063 
504 |a Terribile, D., Trovarelli, A., Llorca, J., De Leitenburg, C., Dolcetti, G.J., (1998) Catal, 178, p. 299 
504 |a Crepaldi, E.L., Soler-Illia, G., Bouchara, A., Grosso, D., Durand, D., Sanchez, C., (2003) Angew. Chem., 42, p. 347. , Int. Ed 
504 |a Colon, G., Navio, J.A., Monaci, R., Ferino, I., (2000) Phvs. Chem. Chem. Phys, 2, p. 4453 
504 |a Aneggi, E., De Leitenburg, C., Dolcetti, G., Trovarelli, A., (2007) Top. Catal, 42-43, p. 319 
504 |a Bueno-Lopez, A., Krishna, K., Van Der Linden, B., Mul, G., Moulijn, J.A., Makkee, M., (2007) Catal. Today, 121, p. 237 
504 |a Kandare, E., Hossenlopp, J.M., (2006) Inorg. Chem, 45, p. 3766 
504 |a Go, Y.B., Jacobson, A.J., (2007) Chem. Mater, 19, p. 4702 
504 |a Jobbagy, M., Soler-Illia, G., Regazzoni, A.E., Blesa, M.A., (1998) Chem. Mater, 10, p. 1632 
504 |a Klissurski, D., Uzunova, E., (1994) J. Mater. Sci, 29, p. 285 
504 |a (2001) Layered Double Hydroxides: Present and Future; Rives, , V., Ed.; Nova Science Publishers: New York 
504 |a Li, F., Liu, J.J., Evans, D.G., Duan, X., (2004) Chem. Mater, 16, p. 1597 
504 |a Gazzano, M., Kagunya, W., Matteuzzi, D., Vaccari, A., (1997) J. Phys. Chem. B, 101, p. 4514 
504 |a Sileo, E.E., Jobbagy, M., Paiva-Santos, C.O., Regazzoni, A.E., (2005) J. Phys- Chem. B, 109, p. 10137 
504 |a Soler-Illia, G., Jobbagy, M., Candal, R.J., Regazzoni, A.E., Blesa, M.A., (1998) J. Dispersion. Sci. Technol, 19, p. 207 
504 |a Chinarro, E., Jurado, J.R., Colomer, M., (2007) Eur. Ceram. Soc, 27, p. 3619 
504 |a Zhou, X.D., Huebner, W., (2001) Appl. Phys. Lett, 79, pp. 35.12 
504 |a Tolentino, H.C.N., Ramos, A.Y., Alves, M.C.M., Barrea, R.A., Tamura, E., Cezar, J.C., Watanabe, N., (2001) J. Synchrotron Radiat, 8, p. 1040 
504 |a Jobbagy, M., Marino, F., Schobrod, B., Baronetti, G., Laborde, M., (2006) Chem. Mater, 18, p. 1945 
504 |a Candal, R.J., Regazzoni, A.E., Blesa, M.A., (1993) Colloids Surf., A, 79, p. 191 
504 |a Aiken, B., Hsu, W.P., Am, M.E.J., (1988) Ceram. Soc, 71, p. 845 
504 |a Li, J.G., Li, X.D., Sun, X.D., Ikegami, T., Ishigaki, T., (2008) Chem. Mater., 20, p. 221 
504 |a Li, J.G., Li, X.D., Sun, X.D., Ishigaki, T.J., (2008) Phvs. Chem. C, 112, p. 11707 
504 |a Newman, S.P., Jones, W., (1999) J. Solid State Chem, 148, p. 26 
504 |a Mclntyre, L.J., Jackson, L.K., Fogg, A.M., (2008) Chem. Mater, 20, p. 335 
504 |a Geng, F.X., Xin, H., Matsushita, Y., Ma, R.Z., Tanaka, M., Izumi, F., Iyi, N., Sasaki, T., (2008) Chem.-Eur. J, 14, p. 9255 
504 |a Rorif, F., Fuger, J., Desreux, J.F., (2005) Radiochim. Acta, 93, p. 103 
504 |a Yang, H.X., Dembowski, R.F., Conrad, P.G., Downs, R.T., (2008) Am. Mineral, 93, p. 698 
504 |a Christen, An., (1973) Acta Chem. Scand, 27, p. 2973 
504 |a Han, Z.H., Zhong, C., Cao, J., Yu, S.H., Tang, K.B., Zhao, H.Q., Qian, Y.T., (2001) J. Cryst. Growth, 222, p. 528 
504 |a Shannon, R.D., (1976) Acta Crystallogr., 32, p. 751 
504 |a Sun, J., Kyotani, T., Tomita, A., (1986) J. Solid State Chem., 65, p. 94 
504 |a Guo, Z.T., Du, F.L., Li, G.C., Cui, Z.L., (2006) Inorg. Chem, 45, p. 4167 
504 |a Park, I.Y., Kim, D., Lee, J., Lee, A.H., Kim, K.J., (2007) Mater. Chem. Phys, 106, p. 149 
504 |a Tsunekawa, S., Fukuda, T., Appl, K.A.J., (2000), 87, pp. 13.18; Tsunekawa, S., Sahara, R., Kawazoe, Y., Kasuya, A., (2000) Mater. Trans., JIM, 41, p. 1104 
504 |a Tsunekawa, S., Sivamohan, R., Ito, S., Kasuya, A., Fukuda, T., (1999) Nanostrct. Mater, 11, p. 141 
504 |a Balducci, G., Islam, M.S., Kaspar, J., Fornasiero, P., Graziani, M., (2003) Chem. Mater, 15, p. 3781 
504 |a Belliére, V., Joorst, G., Stephan, O., De Groot, F.M.F., Weckhuysen, B.M., (2006) J. Phys. Chem. B, 110, p. 9984 
504 |a Dikmen, S., Shuk, P., Greenblatt, M., (1999) Solid State Ionics, 126, p. 89 
504 |a Zhang, F., Jin, Q., Chan, S.W., (2004) J. Appl. Phys, 95, p. 4319 
504 |a Patil, S., Seal, S., Guo, Y., Schulte, A., Norwood, (2006) J. Appl. Phys. Lett, 88 
504 |a Wang, X.Q., Hanson, J.C., Liu, G., Rodriguez, J.A., Iglesiasjuez, A., Fernandez-Garcia, M., (2004) J. Chem. Phys, 121, p. 5434 
504 |a Fernandez-Garcia, M., Wang, X.Q., Belver, C., Iglesias-Juez, A., Hanson, J.C., Rodriguez, J.A., (2005) Chem. Mater, 17, p. 4181 
504 |a Kamruddin, M., Ajikumar, P.K., Nithya, R., Tyagi, A.K., Raj, B., (2004) Scr. Mater, 50, p. 417 
504 |a Kim, N.J., Stebbins, J.F., (2007) Chem. Mater, 19, p. 5742 
504 |a Suzuki, C., Tochio, T., (2007) Chem. Phys, 340, p. 203 
504 |a Roggenbuck, J., Schafer, H., Tsoncheva, T., Minchev, C., Hanss, J., Tiemann, M., (2007) Microporous Mesoporous Mater, 101, p. 335 
504 |a Gamana, D., Belver, C., Fernandez-Garcia, M., Martinez-Arias, A., (2007) J. Am.Chem. Soc, 129, p. 12064 
520 3 |a The controlled decomposition of crystalline Ce 1-xLa x(OH)CO 3 samples to give nanocrystalline Ce 1-XLa xO 2δ solid solutions is studied as a function of temperature and La(III) content. The hexagonal basic carbonates, related to the mineral bastnaesite, are shown to be suitable precursors for the obtainment of Ce(IV-III), La(III) oxides when exposed to O 2 at mild temperatures (250 °C). The oxidation of Ce(III) centers triggers the massive decomposition of the whole precursor, acting as a chemical shortcut to achieve the domain of ceria phases, at temperatures 200 °C lower than the traditional procedures. The mixed oxides exhibit higher surface areas than those obtained for traditional coprecipitation-thermal decomposition procedures, achieving values in the range of those oxides prepared by costly surfactant-assisted methods. © 2009 American Chemical Society.  |l eng 
593 |a DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, C1428EHA-Buenos Aires, Argentina 
593 |a INQUlMAE, CONICET, Argentina 
593 |a Centro Interdisciplinario de Nanociencia y Nanotecnología, Argentina 
690 1 0 |a BASTNAESITE 
690 1 0 |a DOPED CERIA 
690 1 0 |a MILD TEMPERATURES 
690 1 0 |a MIXED OXIDE 
690 1 0 |a NANOCRYSTALLINE 
690 1 0 |a NANOMETRIC 
690 1 0 |a SURFACE AREA 
690 1 0 |a SURFACTANT-ASSISTED METHOD 
690 1 0 |a THERMAL DECOMPOSITIONS 
690 1 0 |a CARBONATES 
690 1 0 |a CERIUM 
690 1 0 |a CRYSTALLINE MATERIALS 
690 1 0 |a LANTHANUM 
690 1 0 |a MINING 
690 1 0 |a OXIDES 
690 1 0 |a PRECIPITATION (CHEMICAL) 
690 1 0 |a PYROLYSIS 
690 1 0 |a SURFACE ACTIVE AGENTS 
690 1 0 |a CERIUM COMPOUNDS 
700 1 |a Sorbello, C. 
700 1 |a Sileo, E.E. 
773 0 |d 2009  |g v. 113  |h pp. 10853-10857  |k n. 25  |p J. Phys. Chem. C  |x 19327447  |t Journal of Physical Chemistry C 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-67649246551&doi=10.1021%2fjp810321y&partnerID=40&md5=31eb9e1b1e0137bb666112759d6bf214  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/jp810321y  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19327447_v113_n25_p10853_Jobbagy  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v113_n25_p10853_Jobbagy  |y Registro en la Biblioteca Digital 
961 |a paper_19327447_v113_n25_p10853_Jobbagy  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 69657