Mammary differentiation induces expression of Tristetraprolin, a tumor suppressor AU-rich mRNA-binding protein

Tristetraprolin (TTP) is a RNA-binding protein that inhibits the expression of pro-inflammatory cytokines and invasiveness-associated genes. TTP levels are decreased in many different cancer types and it has been proposed that this protein could be used as a prognostic factor in breast cancer. Here,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Goddio, M.V
Otros Autores: Gattelli, A., Slomiansky, V., Lacunza, E., Gingerich, T., Tocci, J.M, Facchinetti, M.M, Curino, A.C, LaMarre, J., Abba, M.C, Kordon, E.C
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17358caa a22017057a 4500
001 PAPER-9292
003 AR-BaUEN
005 20230518203912.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84866534415 
024 7 |2 cas  |a STAT5a protein, 176744-10-8; prolactin, 12585-34-1, 50647-00-2, 9002-62-4; Prolactin, 9002-62-4; STAT5 Transcription Factor; STAT5A protein, human; Tristetraprolin; Tumor Suppressor Proteins; ZFP36 protein, human; Zfp36 protein, mouse 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BCTRD 
100 1 |a Goddio, M.V. 
245 1 0 |a Mammary differentiation induces expression of Tristetraprolin, a tumor suppressor AU-rich mRNA-binding protein 
260 |c 2012 
270 1 0 |m Kordon, E.C.; Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, CM1, Pabellón 2, 2do piso, 1428 Ciudad Autónoma de Buenos Aires, Argentina; email: ekordon@qb.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Chen, C.Y.A., Shyu, A.B., AU-rich elements: Characterization and importance in mRNA degradation (1995) Trends Biochem Sci, 20, pp. 465-470 
504 |a Guhaniyogi, J., Brewer, G., Regulation of mRNA stability in mammalian cells (2001) Gene, 265 (1-2), pp. 11-23. , DOI 10.1016/S0378-1119(01)00350-X, PII S037811190100350X 
504 |a Barreau, C., Paillard, L., Osborne, H.B., AU-rich elements and associated factors: Are there unifying principles? (2005) Nucleic Acids Research, 33 (22), pp. 7138-7150. , DOI 10.1093/nar/gki1012 
504 |a Taylor, G.A., Carballo, E., Lee, D.M., Lai, W.S., Thompson, M.J., Patel, D.D., Schenkman, D.I., Blackshear, P.J., A pathogenetic role for TNFα in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency (1996) Immunity, 4 (5), pp. 445-454. , DOI 10.1016/S1074-7613(00)80411-2 
504 |a Smoak, K., Cidlowski, J.A., Glucocorticoids regulate tristetraprolin synthesis and posttranscriptionally regulate tumor necrosis factor alpha inflammatory signaling (2006) Molecular and Cellular Biology, 26 (23), pp. 9126-9135. , DOI 10.1128/MCB.00679-06 
504 |a Ishmael, F.T., Fang, X., Galdiero, M.R., Atasoy, U., Rigby, W.F., Gorospe, M., Cheadle, C., Stellato, C., Role of the RNAbinding protein tristetraprolin in glucocorticoid-mediated gene regulation (2008) J Immunol, 180, pp. 8342-8353 
504 |a Brennan, S., Kuwano, Y., Alkharouf, N., Blackshear, P.J., Gorospe, M., Wilson, G.M., The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis (2009) Cancer Res, 69, pp. 5168-5176 
504 |a Griseri, P., Bourcier, C., Hieblot, C., Essafi-Benkhadir, K., Chamorey, E., Touriol, C., Pagès, G., A synonymous polymorphism of the Tristetraprolin (TTP) gene, an AU-rich mRNA-binding protein, affects translation efficiency and response to Herceptin treatment in breast cancer patients (2011) Hum Mol Genet, 20, pp. 4556-4568 
504 |a Al-Souhibani, N., Al-Ahmadi, W., Hesketh, J.E., Blackshear, P.J., Khabar, K.S.A., The RNA-binding zinc-finger protein tristetraprolin regulates AU-rich mRNAs involved in breast cancer-related processes (2010) Oncogene, 29, pp. 1-11 
504 |a Reichardt, H.M., Horsch, K., Grone, H.-J., Kolbus, A., Beug, H., Hynes, N., Schutz, G., Mammary gland development and lactation are controlled by different glucocorticoid receptor activities (2001) European Journal of Endocrinology, 145 (4), pp. 519-527 
504 |a Strange, R., Li, F., Saurer, S., Burkhardt, A., Friis, R.R., Apoptotic cell death and tissue remodelling during mouse mammary gland involution (1992) Development, 115, pp. 49-58 
504 |a Pensa, S., Watson, C.J., Poli, V., Stat3 and the inflammation/ acute phase response in involution and breast cancer (2009) J Mammary Gland Biol Neoplasia, 14, pp. 121-129 
504 |a Lyons, T.R., Schedin, P.J., Borges, V.F., Pregnancy and breast cancer: When they collide (2009) J Mammary Gland Biol Neoplasia, 14, pp. 87-98 
504 |a Streuli, C.H., Extracellular matrix and gene expression in mammary epithelium (1993) Semin Cell Biol, 4, pp. 203-212 
504 |a Lin, C.Q., Bissell, M.J., Multi-faceted regulation of cell differentiation by extracellular matrix (1993) FASEB Journal, 7 (9), pp. 737-743 
504 |a Danielson, K.G., Oborn, C.J., Durban, E.M., Epithelial mouse mammary cell line exhibiting normal morphogenesis in vivo and functional differentiation in vitro (1984) Proceedings of the National Academy of Sciences of the United States of America, 81 (12), pp. 3756-3760 
504 |a Chammas, R., Taverna, D., Cella, N., Santos, C., Hynes, N.E., Laminin and tenascin assembly and expression regulate HC11 mouse mammary cell differentiation (1994) Journal of Cell Science, 107 (4), pp. 1031-1040 
504 |a Van De Vijver, M.J., He, Y.D., Van 'T Veer, L.J., Dai, H., Hart, A.A.M., Voskuil, D.W., Schreiber, G.J., Bernards, R., A gene-expression signature as a predictor of survival in breast cancer (2002) New England Journal of Medicine, 347 (25), pp. 1999-2009. , DOI 10.1056/NEJMoa021967 
504 |a Fan, C., Oh, D.S., Wessels, L., Weigelt, B., Nuyten, D.S.A., Nobel, A.B., Van't Veer, L.J., Perou, C.M., Concordance among gene-expression-based predictors for breast cancer (2006) New England Journal of Medicine, 355 (6), pp. 560-569. , http://content.nejm.org/cgi/reprint/355/6/560.pdf, DOI 10.1056/NEJMoa052933 
504 |a Abba, M.C., Sun, H., Hawkins, K.A., Drake, J.A., Hu, Y., Nunez, M.I., Gaddis, S., Aldaz, C.M., Breast cancer molecular signatures as determined by SAGE: Correlation with lymph node status (2007) Molecular Cancer Research, 5 (9), pp. 881-890. , http://mcr.aacrjournals.org/cgi/reprint/5/9/881, DOI 10.1158/1541-7786.MCR-07-0055 
504 |a Anderson, S.M., Rudolph, M.C., McManaman, J.L., Neville, M.C., Key stages in mammary gland development. Secretory activation in the mammary gland: It's not just about milk protein synthesis! (2007) Breast Cancer Res, 9, p. 204 
504 |a Curino, A.C., Engelholm, L.H., Yamada, S.S., Holmbeck, K., Lund, L.R., Molinolo, A.A., Behrendt, N., Bugge, T.H., Intracellular collagen degradation mediated by uPARAP/Endo180 is a major pathway of extracellular matrix turnover during malignancy (2005) Journal of Cell Biology, 169 (6), pp. 977-985. , http://www.jcb.org/cgi/reprint/169/6/977, DOI 10.1083/jcb.200411153 
504 |a Buggiano, V., Schere Levy, C., Gattelli, A., Cecilia Cirio, M., Marfil, M., Nepomnaschy, I., Piazzon, I., Kordon, E.C., Origin and progression of pregnancy-dependent mammary tumors induced by new mouse mammary tumor virus variants (2002) Breast Cancer Research and Treatment, 75 (3), pp. 191-202. , DOI 10.1023/A:1019932516887 
504 |a Dexter, D.L., Kowalski, H.M., Blazar, B.A., Heterogeneity of tumor cells from a single mouse mammary tumor (1978) Cancer Research, 38 (10), pp. 3174-3181 
504 |a Beuvink, I., Hess, D., Flotow, H., Hofsteenge, J., Groner, B., Hynes, N.E., Stat5a serine phosphorylation. Serine 779 is constitutively phosphorylated in the mammary gland, and serine 725 phosphorylation influences prolactin-stimulated in vitro DNA binding activity (2000) Journal of Biological Chemistry, 275 (14), pp. 10247-10255. , DOI 10.1074/jbc.275.14.10247 
504 |a Moriggl, R., Gouilleux-Gruart, V., Jahne, R., Berchtold, S., Gartmann, C., Liu, X., Hennighausen, L., Gouilleux, F., Deletion of the carboxyl-terminal transactivation domain of MGF-Stat5 results in sustained DNA binding and a dominant negative phenotype (1996) Molecular and Cellular Biology, 16 (10), pp. 5691-5700 
504 |a Bertucci, P.Y., Quaglino, A., Pozzi, A.G., Kordon, E.C., Pecci, A., Glucocorticoid-induced impairment of mammary gland involution is associated with STAT5 and STAT3 signaling modulation (2010) Endocrinology, 151, pp. 5730-5740 
504 |a Sorlie, T., Perou, C.M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Borresen-Dale, A.-L., Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications (2001) Proceedings of the National Academy of Sciences of the United States of America, 98 (19), pp. 10869-10874. , DOI 10.1073/pnas.191367098 
504 |a Lonning, P.E., Sorlie, T., Perou, C.M., Brown, P.O., Botstein, D., Borresen-Dale, A.-L., Microarrays in primary breast cancer - Lessons from chemotherapy studies (2001) Endocrine-Related Cancer, 8 (3), pp. 259-263. , DOI 10.1677/erc.0.0080259 
504 |a Elston, C.W., Ellis, I.O., Pathological prognostic factors in breast cancer (1991) I. The Value of Histological Grade in Breast Cancer: Experience from A Large Study with Long-term Follow-up. Histopathology, 19, pp. 403-410 
504 |a Ormandy, C.J., Naylor, M., Harris, J., Robertson, F., Horseman, N.D., Lindeman, G.J., Visvader, J., Kelly, P.A., Investigation of the Transcriptional Changes Underlying Functional Defects in the Mammary Glands of Prolactin Receptor Knockout Mice (2003) Recent Progress in Hormone Research, 58, pp. 297-323. , DOI 10.1210/rp.58.1.297 
504 |a Watson, C.J., Burdon, T.G., Prolactin signal transduction mechanisms in the mammary gland: The role of the Jak/Stat pathway (1996) Rev Reprod, 1, pp. 1-5 
504 |a Barnstein, B.O., Li, G., Wang, Z., Kennedy, S., Chalfant, C., Nakajima, H., Bunting, K.D., Ryan, J.J., Stat5 expression is required for IgE-mediated mast cell function (2006) Journal of Immunology, 177 (5), pp. 3421-3426 
504 |a Suzuki, K., Nakajima, H., Ikeda, K., Maezawa, Y., Suto, A., Takatori, H., Saito, Y., Iwamoto, I., IL-4-Stat6 Signaling Induces Tristetraprolin Expression and Inhibits TNF-α Production in Mast Cells (2003) Journal of Experimental Medicine, 198 (11), pp. 1717-1727. , DOI 10.1084/jem.20031701 
504 |a Joe, Y., Kim, H.J., Kim, S., Chung, J., Ko, M.S., Lee, W.H., Chang, K.C., Chung, H.T., Tristetraprolin mediates antiinflammatory effects of nicotine in lipopolysaccharide-stimulated macrophages (2011) J Biol Chem, 286, pp. 24735-24742 
504 |a Dubois, R.N., McLane, M.W., Ryder, K., Lau, L.F., Nathans, D., A growth factor-inducible nuclear protein with a novel cysteine/ histidine repetitive sequence (1990) J Biol Chem, 265, pp. 19185-19191 
504 |a Lai, W.S., Stumpo, D.J., Blackshear, P.J., Rapid insulin-stimulated accumulation of an mRNA encoding a proline-rich protein (1990) J Biol Chem, 265, pp. 16556-16563 
504 |a Mittelstadt, P.R., Defranco, A., Induction of early response genes by cross-linking membrane Ig on B lymphocytes (2003) J Immunol, 150, pp. 4822-4832 
504 |a Ogawa, K., Chen, F., Kim, Y.-J., Chen, Y., Transcriptional regulation of tristetraprolin by transforming growth factor-β in human T cells (2003) Journal of Biological Chemistry, 278 (32), pp. 30373-30381. , DOI 10.1074/jbc.M304856200 
520 3 |a Tristetraprolin (TTP) is a RNA-binding protein that inhibits the expression of pro-inflammatory cytokines and invasiveness-associated genes. TTP levels are decreased in many different cancer types and it has been proposed that this protein could be used as a prognostic factor in breast cancer. Here, using publicly available DNA microarray datasets, "serial analysis of gene expression" libraries and qRT-PCR analysis, we determined that TTP mRNA is present in normal breast cells and its levels are significantly decreased in all breast cancer subtypes. In addition, by immunostaining, we found that TTP expression is higher in normal breast tissue and benign lesions than in infiltrating carcinomas. Among these, lower grade tumors showed increased TTP expression compared to higher grade cancers. Therefore, these data indicate that TTP protein levels would provide a better negative correlation with breast cancer invasiveness than TTP transcript levels. In mice, we found that TTP mRNA and protein expression is also diminished in mammary tumors. Interestingly, a strong positive association of TTP expression and mammary differentiation was identified in normal and tumor cells. In fact, TTP expression is highly increased during lactation, showing good correlation with various mammary differentiation factors. TTP expression was also induced in mammary HC11 cells treated with lactogenic hormones, mainly by prolactin, through Stat5A activation. The effect of this hormone was highly dependent on mammary differentiation status, as prolactin was unable to elicit a similar response in proliferating or neoplastic mammary cells. In summary, these studies show that TTP expression is strongly linked to the mammary differentiation program in human and mice, suggesting that this protein might play specific and relevant roles in the normal physiology of the gland. © Springer Science+Business Media, LLC. 2012.  |l eng 
536 |a Detalles de la financiación: Natural Sciences and Engineering Research Council of Canada 
536 |a Detalles de la financiación: National Research Council of Science and Technology 
536 |a Detalles de la financiación: Fundación Alberto J. Roemmers 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Acknowledgments This work was supported by the grants and fellowships awarded by the National Council of Science and Technology (CONICET), the National Agency of Scientific and Technological Promotion (ANPCyT) and Fundación Roemmers, Argentina and NSERC (Canada). We thank Dr. Nancy Hynes (Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland) for 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de la Plata, La Plata, Argentina 
593 |a OntarioVeterinarian College, University of Guelph, ON, Canada 
593 |a Laboratorio de Biología Del Cáncer, INIBIBB-CONICET, Centro Científico Tecnológico, Bahía Blanca, Argentina 
593 |a Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, CM1, Pabellón 2, 2do piso, 1428 Ciudad Autónoma de Buenos Aires, Argentina 
690 1 0 |a BREAST CANCER 
690 1 0 |a LACTATION 
690 1 0 |a MAMMARY GLAND 
690 1 0 |a PROLACTIN 
690 1 0 |a TRISTETRAPROLIN 
690 1 0 |a MESSENGER RNA 
690 1 0 |a PROLACTIN 
690 1 0 |a RNA BINDING PROTEIN 
690 1 0 |a STAT5A PROTEIN 
690 1 0 |a TRISTETRAPROLIN 
690 1 0 |a 3' UNTRANSLATED REGION 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a ARTICLE 
690 1 0 |a AU RICH ELEMENT 
690 1 0 |a BREAST CANCER 
690 1 0 |a BREAST CARCINOMA 
690 1 0 |a BREAST CELL 
690 1 0 |a BREAST LESION 
690 1 0 |a BREAST TUMOR 
690 1 0 |a CANCER CELL 
690 1 0 |a CANCER GRADING 
690 1 0 |a CANCER INVASION 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DNA MICROARRAY 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN TISSUE 
690 1 0 |a IMMUNOHISTOCHEMISTRY 
690 1 0 |a LACTATION 
690 1 0 |a MAMMARY GLAND 
690 1 0 |a MOUSE 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a REVERSE TRANSCRIPTION POLYMERASE CHAIN REACTION 
690 1 0 |a SERIAL ANALYSIS OF GENE EXPRESSION 
690 1 0 |a TISSUE DIFFERENTIATION 
690 1 0 |a ANIMALS 
690 1 0 |a BASE SEQUENCE 
690 1 0 |a BREAST NEOPLASMS 
690 1 0 |a CELL DIFFERENTIATION 
690 1 0 |a CELL LINE, TUMOR 
690 1 0 |a FEMALE 
690 1 0 |a GENE EXPRESSION REGULATION, NEOPLASTIC 
690 1 0 |a HUMANS 
690 1 0 |a LACTATION 
690 1 0 |a MAMMARY GLANDS, ANIMAL 
690 1 0 |a MAMMARY GLANDS, HUMAN 
690 1 0 |a MAMMARY NEOPLASMS, ANIMAL 
690 1 0 |a MICE 
690 1 0 |a MICE, INBRED BALB C 
690 1 0 |a MOLECULAR SEQUENCE DATA 
690 1 0 |a PREGNANCY 
690 1 0 |a PROLACTIN 
690 1 0 |a STAT5 TRANSCRIPTION FACTOR 
690 1 0 |a TRISTETRAPROLIN 
690 1 0 |a TUMOR SUPPRESSOR PROTEINS 
700 1 |a Gattelli, A. 
700 1 |a Slomiansky, V. 
700 1 |a Lacunza, E. 
700 1 |a Gingerich, T. 
700 1 |a Tocci, J.M. 
700 1 |a Facchinetti, M.M. 
700 1 |a Curino, A.C. 
700 1 |a LaMarre, J. 
700 1 |a Abba, M.C. 
700 1 |a Kordon, E.C. 
773 0 |d 2012  |g v. 135  |h pp. 749-758  |k n. 3  |p Breast Cancer Res. Treat.  |x 01676806  |t Breast Cancer Research and Treatment 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84866534415&doi=10.1007%2fs10549-012-2216-0&partnerID=40&md5=6d384a0b266724d28008f1fc9adb3868  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s10549-012-2216-0  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01676806_v135_n3_p749_Goddio  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01676806_v135_n3_p749_Goddio  |y Registro en la Biblioteca Digital 
961 |a paper_01676806_v135_n3_p749_Goddio  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70245