Pulsed Light Treatment of Cut Apple: Dose Effect on Color, Structure, and Microbiological Stability

This study investigated the effect of pulsed light (PL) dose on color, microstructure, and microbiological stability of cut apples during 7-day refrigerated storage. Apples were irradiated at two different distances from the lamp (5 or 10 cm) during 2 to 100 s (2. 4 to 221.1 J/cm 2). Cut-apple surfa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gómez, P.L
Otros Autores: Salvatori, D.M, García-Loredo, A., Alzamora, S.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11400caa a22011537a 4500
001 PAPER-9444
003 AR-BaUEN
005 20230518203922.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84864410825 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Gómez, P.L. 
245 1 0 |a Pulsed Light Treatment of Cut Apple: Dose Effect on Color, Structure, and Microbiological Stability 
260 |c 2012 
270 1 0 |m Alzamora, S. M.; Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Ciudad Autónoma de Buenos Aires, Argentina; email: smalzamora@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Alzamora, S.M., Salvatori, D., Minimal processing: fundamental and applications (2006) Handbook of Food Science, Technology and Engineering, 3, pp. 1-6. , Boca Raton: CRC Press/Taylor & Francis 
504 |a Anderson, J.G., Rowan, N.J., Macgregor, S.J., Fouracre, R.A., Farish, O., Inactivation of food-borne enteropathogenic bacteria and spoilage fungi using pulsed-light (2000) IEEE Transactions on Plasma Science, 28, pp. 83-88 
504 |a Bialka, K.L., Demirci, A., Puri, V., Modeling the inactivation of Escherichia coli O157:H7 and Salmonella enterica on raspberries and strawberries resulting from exposure to ozone or pulsed UV-light (2008) Journal of Food Engineering, 85, pp. 444-449 
504 |a Choi, M.-S., Cheigh, C.-I., Jeong, E.A., Shin, J.K., Chung, M.-S., Nonthermal sterilization of Listeria monocytogenes in infant foods by intense pulsed-light treatment (2010) Journal of Food Engineering, 97, pp. 504-509 
504 |a Dunn, J.E., Clark, R.W., Asmus, J.F., Pearlman, J.S., Boyerr, K., Painchaud, F., (1989) Methods for preservation of foodstuffs, , US Patent No 4. 871. 559 (in USA 
504 |a Dunn, J., Ott, T., Clark, W., Pulsed-light treatment of food and packing (1995) Food Technology, 49, pp. 95-98 
504 |a (1996) Code of federal regulations, , FDA, 21CFR179. 41 
504 |a (2000) Kinetics of microbial inactivation for alternative food processing technologies, , http://www.cfsan.fda.gov/~comm/ift-puls.html, FDA, Accesed 11 February 2009 
504 |a Gómez, P., Alzamora, S.M., Castro, M.A., Salvatori, D.M., Effect of ultraviolet-C light dose on quality of cut-apple: microorganism, color and compression behavior (2010) Journal of Food Engineering, 98, pp. 60-70 
504 |a Gómez-López, V.M., Devlieghere, F., Bonduelle, V., Debevere, J., Factors affecting the inactivation of micro-organisms by intense light pulses (2005) Journal of Applied Microbiology, 99, pp. 460-470 
504 |a Gómez-López, V.M., Devlieghere, F., Bonduelle, V., Debevere, J., Intense light pulses decontamination of minimally processed vegetables and their shelf-life (2005) International Journal of Food Microbiology, 103, pp. 79-89 
504 |a Gómez-López, V.M., Ragaert, P., Debevere, J., Devlieghere, F., Pulsed light for food decontamination: a review (2007) Trends in Food Science and Technology, 18, pp. 464-473 
504 |a Goupy, P., Amiot, M.J., Richard-Forget, F., Duprat, F., Aubert, S., Nicolas, J., Enzymatic browning of model solutions and apple phenolic substrates by apple polyphenoloxidase (1995) Journal of Food Science, 60, pp. 497-501 
504 |a Jun, S., Irudayaraj, J., Demirci, A., Gêiser, D., Pulsed UV-light treatment of corn meal for inactivation of Aspergillus niger spores (2003) International Journal of Food Science & Technology, 38, pp. 883-888 
504 |a Krishnamurthy, K., Tewari, J.C., Irudayaraj, J., Demirci, A., Microscopic and spectroscopic evaluation of inactivation of Staphylococcus aureus by pulsed UV light and infrared heating (2010) Food and Bioprocess Technology, 3, pp. 93-104 
504 |a Monsalve-González, A., Barbosa-Cánovas, G.V., Cavalieri, R.P., McEvily, A., Iyengar, R., Control of browning during storage of apple slices preserved by combined methods, 4-hexyl-resorcinol as antibrowning agent (1993) Journal of Food Science, 58, pp. 797-800 
504 |a Oms-Oliu, G., Martín-Belloso, O., Pulsed light treatments for food preservation. A review (2010) Food and Bioprocess Technology, 3, pp. 13-23 
504 |a Oms-Oliu, G., Aguiló-Aguayo, I., Martín-Belloso, O., Soliva-Fortuny, R., Effects of pulsed light treatments on quality and antioxidant properties of fresh-cut mushrooms (Agaricus bisporus) (2010) Postharvest Biology and Technology, 56, pp. 216-222 
504 |a Ozer, N.P., Demirci, A., Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-light treatment (2006) International Journal of Food Science & Technology, 41, pp. 354-360 
504 |a Pereira, R.N., Vicente, A.A., Environmental impact of novel thermal and non-thermal technologies in food processing (2010) Food Research International, 43, pp. 1936-1943 
504 |a Rajkovic, A., Smigic, N., Devlieghere, F., Contemporary strategies in combating microbial contamination in food chain (2010) International Journal of Food Microbiology, 141, pp. S29-S42 
504 |a Sapers, G.M., Douglas, F.W., Measurement of enzymatic browning at cut surfaces and in juice of raw apple and pear fruit (1987) Journal of Food Science, 52, pp. 1258-1262 
504 |a Sauer, A., Moraru, C., Inactivation of Escherichia coli ATCC 25922 and Escherichia coli O157:H7 in apple juice and apple cider, using pulsed light treatment (2009) Journal of Food Protection, 72, pp. 937-944 
504 |a Sharma, R.R., Demirci, A., Inactivation of Escherichia coli O157:H7 on inoculated alfalfa seeds with pulsed ultraviolet light and response surface modeling (2003) Journal of Food Science, 68, pp. 1448-1453 
504 |a Takeshita, K., Sibato, J., Sameshima, T., Fukunaga, S., Isobe, S., Arihara, K., Damage of yeast cells induced by pulsed light irradiation (2003) International Journal of Food Microbiology, 85, pp. 151-158 
504 |a Uesugi, A.R., Woodling, S.E., Moraru, C.I., Inactivation kinetics and factors of variability in the pulsed light treatment of Listeria innocua cells (2007) Journal of Food Protection, 70, pp. 2518-2525 
504 |a Woodling, S.E., Moraru, C.I., Influence of surface topography on the effectiveness of pulsed light treatment for the inactivation of Listeria innocua on stainless-steel surfaces (2005) Journal of Food Science, 70, pp. M345-M351 
504 |a Woodling, S.E., Moraru, C.I., Effect of spectral range in surface inactivation of Listeria innocua using broad-spectrum pulsed light (2007) Journal of Food Protection, 70, pp. 909-916 
504 |a Zar, J.H., (1999) Biostatistical Analysis, , 4th edn., New Jersey: Prentice Hall 
520 3 |a This study investigated the effect of pulsed light (PL) dose on color, microstructure, and microbiological stability of cut apples during 7-day refrigerated storage. Apples were irradiated at two different distances from the lamp (5 or 10 cm) during 2 to 100 s (2. 4 to 221.1 J/cm 2). Cut-apple surface exposed to high PL fluencies turned darker (lower L* values) and less green (higher a* value) than the control, and this effect was more pronounced as PL dose and/or storage time increased. On the contrary, the application of few flashes (2.4 J/cm 2) allowed maintaining the original color of apples slices along storage. Light microscopy images of treated samples showed degraded walls and broken plasmalemma and tonoplast, which may explain, at least partially, the increase in browning of irradiated apples at high doses. Inactivation patterns of inoculated microorganisms depended on PL dose and the type of microorganism. After 100 s PL treatment at 5 cm, no counts were observed for Saccharomyces cerevisiae KE162, while for Escherichia coli ATCC 11229 and Listeria innocua ATCC 33090, reduction levels were 2. 25 and 1. 7 logs, respectively. Native microflora population was in general higher in control samples than in 10 and 60 s PL irradiated apples along the whole storage. Although the application of high PL fluencies allowed obtaining greater microbial reductions, they also promoted browning of apple. Application of PL at a dose of 11.9 J/cm 2 could extend the shelf life of cut apple with minimal modification in color. © 2011 Springer Science + Business Media, LLC.  |l eng 
536 |a Detalles de la financiación: Inter-American Development Bank 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Universidad Nacional del Litoral 
536 |a Detalles de la financiación: Acknowledgments The authors want to thank the financial support from Universidad de Buenos Aires, Universidad Nacional del Comahue, CONICET, and ANPCyT of Argentina and from BID. They also thank Dr. Francisco Manzano and Dra. Violeta D'Accurso for performing the fluence measurements. 
593 |a Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Ciudad Autónoma de Buenos Aires, Argentina 
593 |a Departamento de Química, Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina 
650 1 7 |2 spines  |a COLOR 
650 1 7 |2 spines  |a COLOR 
690 1 0 |a CUT APPLE 
690 1 0 |a DOSE 
690 1 0 |a MICROBIOLOGICAL STABILITY 
690 1 0 |a PULSED LIGHT 
690 1 0 |a STRUCTURE 
690 1 0 |a CUT APPLE 
690 1 0 |a DOSE 
690 1 0 |a DOSE EFFECTS 
690 1 0 |a HIGH DOSE 
690 1 0 |a IN-CONTROL 
690 1 0 |a LISTERIA INNOCUA 
690 1 0 |a MICROBIAL REDUCTION 
690 1 0 |a MICROBIOLOGICAL STABILITY 
690 1 0 |a MICROSCOPY IMAGES 
690 1 0 |a NATIVE MICROFLORA 
690 1 0 |a PLASMALEMMA 
690 1 0 |a PULSED LIGHT 
690 1 0 |a REDUCTION LEVEL 
690 1 0 |a REFRIGERATED STORAGES 
690 1 0 |a SHELF LIFE 
690 1 0 |a STORAGE TIME 
690 1 0 |a TONOPLASTS 
690 1 0 |a CELL MEMBRANES 
690 1 0 |a ESCHERICHIA COLI 
690 1 0 |a STRUCTURE (COMPOSITION) 
690 1 0 |a YEAST 
690 1 0 |a FRUITS 
690 1 0 |a ESCHERICHIA COLI 
690 1 0 |a LISTERIA INNOCUA 
690 1 0 |a MALUS X DOMESTICA 
690 1 0 |a SACCHAROMYCES CEREVISIAE 
700 1 |a Salvatori, D.M. 
700 1 |a García-Loredo, A. 
700 1 |a Alzamora, S.M. 
773 0 |d 2012  |g v. 5  |h pp. 2311-2322  |k n. 6  |p Food. Bioprocess Technol.  |x 19355130  |t Food and Bioprocess Technology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84864410825&doi=10.1007%2fs11947-011-0598-3&partnerID=40&md5=63706d9154260b19617aad654ce435f8  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11947-011-0598-3  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19355130_v5_n6_p2311_Gomez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19355130_v5_n6_p2311_Gomez  |y Registro en la Biblioteca Digital 
961 |a paper_19355130_v5_n6_p2311_Gomez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 70397