Plasmonics meets far-field optical nanoscopy
Figure Persented: Plasmonics and near-field optical nanoscopy both deal with expanding optics into the subwavelength regime. However, these two fields have so far followed parallel paths of development and only recently have researchers started to explore combinations of their concepts with potentia...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2012
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 08196caa a22009377a 4500 | ||
|---|---|---|---|
| 001 | PAPER-9546 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230607131854.0 | ||
| 008 | 190411s2012 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84862886217 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Balzarotti, F. | |
| 245 | 1 | 0 | |a Plasmonics meets far-field optical nanoscopy |
| 260 | |c 2012 | ||
| 270 | 1 | 0 | |m Stefani, F.D.; Departamento de Física, Instituto de Física de Buenos Aires (IFIBA, CONICET), Pabellón 1 Ciudad Universitaria, 1428 Buenos Aires, Argentina; email: fernando.stefani@df.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Hell, S.W., Microscopy and Its Focal Switch (2009) Nat. Methods, 6, pp. 24-32 | ||
| 504 | |a Hell, S.W., Wichmann, J., Breaking the Diffraction Resolution Limit (1994) Opt. Lett., 19, pp. 780-782 | ||
| 504 | |a Klar, T.A., Jakobs, S., Dyba, M., Egner, A., Hell, S.W., Fluorescence Microscopy with Diffraction Resolution Barrier Broken by Stimulated Emission (2000) Proc. Natl. Acad. Sci. U.S.A., 97, pp. 8206-8210 | ||
| 504 | |a Heintzmann, R., Jovin, T.M., Cremer, C., Saturated Patterned Excitation Microscopy-A Concept for Optical Resolution Improvement (2002) J. Opt. Soc. Am. A, 19, pp. 1599-1609 | ||
| 504 | |a Gustafsson, M.G.L., Nonlinear Structured-Illumination Microscopy: Wide-Field Fluorescence Imaging with Theoretically Unlimited Resolution (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 13081-13086 | ||
| 504 | |a Bates, M., Huang, B., Zhuang, X., Super-Resolution Microscopy by Nanoscale Localization of Photo-Switchable Fluorescent Probes (2008) Curr. Opin. Chem. Biol., 12, pp. 505-514 | ||
| 504 | |a Geissbuehler, S., Dellagiacoma, C., Lasser, T., Comparison between SOFI and STORM (2011) Biomed. Opt. Express, 2, pp. 408-420 | ||
| 504 | |a Dertinger, T., Colyer, R., Vogel, R., Enderlein, J., Weiss, S., Achieving Increased Resolution and More Pixels with Superresolution Optical Fluctuation Imaging (SOFI) (2010) Opt. Express, 18, pp. 18875-18885 | ||
| 504 | |a Coronado, E.A., Encina, E.R., Stefani, F.D., Optical Properties of Metallic Nanoparticles: Manipulating Light, Heat and Forces at the Nanoscale (2011) Nanoscale, 3, pp. 4042-4059 | ||
| 504 | |a Schuller, J.A., Barnard, E.S., Cai, W., Jun, Y.C., White, J.S., Brongersma, M.L., Plasmonics for Extreme Light Concentration and Manipulation (2010) Nat. Mater., 9, pp. 193-204 | ||
| 504 | |a Oulton, R.F., Sorger, V.J., Zentgraf, T., Ma, R.-M., Gladden, C., Dai, L., Bartal, G., Zhang, X., Plasmon Lasers at Deep Subwavelength Scale (2009) Nature, 461, pp. 629-632 | ||
| 504 | |a Taminiau, T.H., Moerland, R.J., Segerink, F.B., Kuipers, L., Van Hulst, N.F., Lambda/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence (2007) Nano Lett., 7, pp. 28-33 | ||
| 504 | |a Gramotnev, D.K., Bozhevolnyi, S.I., Plasmonics beyond the Diffraction Limit (2010) Nat. Photonics, 4, pp. 83-91 | ||
| 504 | |a Taminiau, T.H., Stefani, F.D., Segerink, F.B., Van Hulst, N.F., Optical Antennas Direct Single-Molecule Emission (2008) Nat. Photonics, 2, pp. 234-237 | ||
| 504 | |a Curto, A.G., Volpe, G., Taminiau, T.H., Kreuzer, M.P., Quidant, R., Van Hulst, N.F., Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna (2010) Science, 329, pp. 930-933 | ||
| 504 | |a Wu, D., Liu, Z., Sun, C., Zhang, X., Super-Resolution Imaging by Random Adsorbed Molecule Probes (2008) Nano Lett., 8, pp. 1159-1162 | ||
| 504 | |a Zhai, X., Sun, Y., Wu, D., Resolution Enhancement of Random Adsorbed Single-Molecule Localization Based on Surface Plasmon Resonance Illumination (2011) Opt. Lett., 36, pp. 4242-4244 | ||
| 504 | |a Wei, F., Liu, Z., Plasmonic Structured Illumination Microscopy (2010) Nano Lett., 10, pp. 2531-2536 | ||
| 504 | |a Zhang, H., Zhao, M., Peng, L., Nonlinear Structured Illumination Microscopy by Surface Plasmon Enhanced Stimulated Emission Depletion (2011) Opt. Express, 19, pp. 24783-24794 | ||
| 504 | |a Sivan, Y., Sonnefraud, Y., Kéna-Cohen, S., Pendry, J.B., Maier, S.A., Nanoparticle-Assisted Stimulated-Emission-Depletion Nanoscopy (2012) ACS Nano, 6. , DOI: 10.1021/nn301082g | ||
| 504 | |a Cang, H., Labno, A., Lu, C., Yin, X., Liu, M., Gladden, C., Liu, Y., Zhang, X., Probing the Electromagnetic Field of a 15-Nanometre Hotspot by Single Molecule Imaging (2011) Nature, 469, pp. 385-388 | ||
| 504 | |a Stranahan, S.M., Willets, K., Super-Resolution Optical Imaging of Single-Molecule SERS Hot Spots (2010) Nano Lett., 10, pp. 3777-3784 | ||
| 504 | |a Bharadwaj, P., Deutsch, B., Novotny, L., Optical Antennas (2009) Adv. Opt. Photonics, 1, pp. 438-483 | ||
| 504 | |a Taminiau, T.H., Stefani, F.D., Van Hulst, N.F., Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes (2011) Nano Lett., 11, pp. 1020-1024 | ||
| 504 | |a Tcherniak, A., Dominguez-Medina, S., Chang, W.S., Swanglap, P., Slaughter, L.S., Landes, C.F., Link, S., One-Photon Plasmon Luminescence and Its Application to Correlation Spectroscopy as a Probe for Rotational and Translational Dynamics of Gold Nanorods (2011) J. Phys. Chem. C, 115, pp. 15938-15949 | ||
| 504 | |a Mohamed, M.B., Volkov, V., Link, S., El-Sayed, M.A., The "lightning" Gold Nanorods: Fluorescence Enhancement of over a Million Compared to the Gold Metal (2000) Chem. Phys. Lett., 317, pp. 517-523 | ||
| 504 | |a Wang, H., Huff, T.B., Zweifel, D.A., He, W., Low, P.S., Wei, A., Cheng, J.-X., In Vitro and in Vivo Two-Photon Luminescence Imaging of Single Gold Nanorods (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 15752-15756 | ||
| 504 | |a Durr, N.J., Larson, T., Smith, D.K., Korgel, B.A., Sokolov, K., Ben-Yakar, A., Two-Photon Luminescence Imaging of Cancer Cells Using Molecularly Targeted Gold Nanorods (2007) Nano Lett., 7, pp. 941-945 | ||
| 520 | 3 | |a Figure Persented: Plasmonics and near-field optical nanoscopy both deal with expanding optics into the subwavelength regime. However, these two fields have so far followed parallel paths of development and only recently have researchers started to explore combinations of their concepts with potential synergy. In this Perspective, we provide an up-to-date summary of the successful combinations reported and give insight into some new possibilities. © 2012 American Chemical Society. |l eng | |
| 593 | |a Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany | ||
| 593 | |a Departamento de Física, Instituto de Física de Buenos Aires (IFIBA, CONICET), Pabellón 1 Ciudad Universitaria, 1428 Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a FAR-FIELD |
| 690 | 1 | 0 | |a NEAR-FIELD |
| 690 | 1 | 0 | |a PARALLEL PATH |
| 690 | 1 | 0 | |a PLASMONICS |
| 690 | 1 | 0 | |a POTENTIAL SYNERGIES |
| 690 | 1 | 0 | |a SUB-WAVELENGTH |
| 690 | 1 | 0 | |a ENGINEERING |
| 690 | 1 | 0 | |a NANOTECHNOLOGY |
| 690 | 1 | 0 | |a PLASMONS |
| 690 | 1 | 0 | |a NANOPARTICLE |
| 690 | 1 | 0 | |a ATOMIC FORCE MICROSCOPY |
| 690 | 1 | 0 | |a CHEMISTRY |
| 690 | 1 | 0 | |a IMAGE ENHANCEMENT |
| 690 | 1 | 0 | |a METHODOLOGY |
| 690 | 1 | 0 | |a NANOTECHNOLOGY |
| 690 | 1 | 0 | |a PARTICLE SIZE |
| 690 | 1 | 0 | |a REVIEW |
| 690 | 1 | 0 | |a SURFACE PLASMON RESONANCE |
| 690 | 1 | 0 | |a ULTRASTRUCTURE |
| 690 | 1 | 0 | |a IMAGE ENHANCEMENT |
| 690 | 1 | 0 | |a MICROSCOPY, ATOMIC FORCE |
| 690 | 1 | 0 | |a NANOPARTICLES |
| 690 | 1 | 0 | |a NANOTECHNOLOGY |
| 690 | 1 | 0 | |a PARTICLE SIZE |
| 690 | 1 | 0 | |a SURFACE PLASMON RESONANCE |
| 700 | 1 | |a Stefani, F.D. | |
| 773 | 0 | |d 2012 |g v. 6 |h pp. 4580-4584 |k n. 6 |p ACS Nano |x 19360851 |t ACS Nano | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84862886217&doi=10.1021%2fnn302306m&partnerID=40&md5=e58a949ca0ed05b5de99e3916d55ea3c |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1021/nn302306m |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_19360851_v6_n6_p4580_Balzarotti |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19360851_v6_n6_p4580_Balzarotti |y Registro en la Biblioteca Digital |
| 961 | |a paper_19360851_v6_n6_p4580_Balzarotti |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 70499 | ||