Involvement of heterogeneous nuclear ribonucleoproteins in viral multiplication

The study of virus-host interactions is a major goal in molecular virology and provides new effective targets for antiviral therapies. Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a group of cellular RNA-binding proteins localized predominantly within the nucleus, which participate i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Castilla, V.
Otros Autores: Scolaro, L.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 32196caa a22025457a 4500
001 PAPER-9609
003 AR-BaUEN
005 20230607131854.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84862008186 
024 7 |2 cas  |a guanosine triphosphatase, 9059-32-9 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Castilla, V. 
245 1 0 |a Involvement of heterogeneous nuclear ribonucleoproteins in viral multiplication 
260 |c 2012 
270 1 0 |m Castilla, V.; Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; email: viviana@qb.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Dreyfuss, G., Matunis, M.J., Pinolroma, S., Burd, C.G., HnRNP proteins and the biogenesis of messenger-RNA (1993) Annu. Rev. Biochem., 62, pp. 289-321 
504 |a Han, S.P., Tang, I.H., Smith, R., Functional diversity of the hnRNPs: Past, present and perspectives (2010) Biochem. J., 430 (3), pp. 379-392. , Complete and updated review regarding the structure and cellular functions of most heterogeneous nuclear ribonucleoproteins (hnRNPs) described to date 
504 |a Chaudhury, A., Chander, P., Howe, P.H., Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: Focus on hnRNP E1's multifunctional regulatory roles (2010) RNA, 16 (8), pp. 1449-1462 
504 |a Cheunim, T., Zhang, J., Milligan, S.G., McPhillips, M.G., Graham, S.V., The alternative splicing factor hnRNP A1 is up-regulated during virus-infected epithelial cell differentiation and binds the human papillomavirus type 16 late regulatory element (2008) Virus Res., 131 (2), pp. 189-198 
504 |a Monette, A., Ajamian, L., López-Lastra, M., Mouland, A.J., Human immunodeficiency virus type 1 (HIV-1) induces the cytoplasmic retention of heterogeneous nuclear ribonucleoprotein A1 by disrupting nuclear import: Implications for HIV-1 gene expression (2009) J. Biol. Chem., 284 (45), pp. 31350-33162. , Interesting article that accurately explores both the mechanism of cytoplasmic relocalization and the function of hnRNP A1 during HIV infection 
504 |a Maeto, C.A., Knott, M.E., Linero, F.N., Ellenberg, P.C., Scolaro, L.A., Castilla, V., Differential effect of acute and persistent Junin virus infections on the nucleo-cytoplasmic trafficking and expression of heterogeneous nuclear ribonucleoproteins type A and B (2011) J. Gen. Virol., 92 (9), pp. 2181-2190 
504 |a Belov, G.A., Evstafieva, A.G., Rubtsov, Y.P., Mikitas, O.V., Vartapetian, A.B., Agol, V.I., Early alteration of nucleocytoplasmic traffic induced by some RNA viruses (2000) Virology, 275 (2), pp. 244-248 
504 |a Gustin, K.E., Sarnow, P., Inhibition of nuclear import and alteration of nuclear pore complex composition by rhinovirus (2002) J. Virol., 76 (17), pp. 8787-8796 
504 |a Gustin, K.E., Inhibition of nucleo-cytoplasmic trafficking by RNA viruses: Targeting the nuclear pore complex (2003) Virus Res., 95 (1-2), pp. 35-44 
504 |a Romanelli, M.G., Morandi, C., Importin a binds to an unusual bipartite nuclear localization signal in the heterogeneous ribonucleoprotein type I (2002) Eur. J. Biochem., 269 (11), pp. 2727-2734 
504 |a Park, N., Katikaneni, P., Skern, T., Gustin, K.E., Differential targeting of nuclear pore complex proteins in poliovirus-infected cells (2008) J. Virol., 82 (4), pp. 1647-1655 
504 |a Porter, F.W., Bochkov, Y.A., Albee, A.J., Wiese, C., Palmenberg, A.C., A picornavirus protein interacts with Ran-GTPase and disrupts nucleocytoplasmic transport (2006) Proc. Natl Acad. Sci. USA, 103 (33), pp. 12417-12422 
504 |a Petersen, J.M., Her, L.S., Dahlberg, J.E., Multiple vesiculoviral matrix proteins inhibit both nuclear export and import (2001) Proc. Natl Acad. Sci. USA, 98 (15), pp. 8590-8595 
504 |a Von Kobbe, C., Van Deursen, J.M.A., Rodrigues, J.P., Vesicular stomatitis virus matrix protein inhibits host cell gene expression by targeting the nucleopoin Nup98 (2000) Mol. Cell, 6 (5), pp. 1243-1252 
504 |a Pettit Kneller, E.L., Connor, J.H., Lyles, D.S., hnRNPs relocalize to the cytoplasm following infection with vesicular stomatitis virus (2009) J. Virol., 83 (2), pp. 770-780 
504 |a Faria, P.A., Chakraborty, P., Levay, A., VSV disrupts the Rae1/mrnp41 mRNA nuclear export pathway (2005) Mol. Cell, 17 (1), pp. 93-102 
504 |a Koloteva-Levine, N., Amichay, M., Elroy-Stein, O., Interaction of hnRNP-C1/C2 proteins with RNA: Analysis using the yeast three-hybrid system (2002) FEBS Lett., 523 (1-3), pp. 73-78 
504 |a Brunner, J.E., Nguyen, J.H., Roehl, H.H., Ho, T.V., Swiderek, K.M., Semler, B.L., Functional interaction of heterogeneous nuclear ribonucleoprotein C with poliovirus RNA synthesis initiation complexes (2005) J. Virol., 79 (6), pp. 3254-3266 
504 |a Ertel, K.J., Brunner, J.E., Semler, B.L., Mechanistic consequences of hnRNP C binding to both RNA termini of poliovirus negative-strand RNA intermediates (2010) J. Virol., 84 (9), pp. 4229-4242. , Demonstrates the role of an hnRNP in the promotion of efficient poliovirus positive-strand RNA synthesis 
504 |a Brunner, J.E., Ertel, K.J., Rozovics, J.M., Semler, B.L., Delayed kinetics of poliovirus RNA synthesis in a human cell line with reduced levels of hnRNP C proteins (2010) Virology, 400 (2), pp. 240-247 
504 |a Dejgaard, K., Leffers, H., Characterisation of the nucleic-acid binding activity of KH domains. Different properties of different domains (1996) Eur. J. Biochem., 241 (2), pp. 425-431 
504 |a Gamarnik, A.V., Andino, R., Two functional complexes formed by KH domain containing proteins with the 5′ noncoding region of poliovirus RNA (1997) RNA, 3 (8), pp. 882-892 
504 |a Kim, J.H., Hahm, B., Kim, Y.K., Choi, M., Jang, S.K., Protein-protein interaction among hnRNPs shuttling between nucleus and cytoplasm (2000) J. Mol. Biol., 298 (3), pp. 395-405 
504 |a Gamarnik, A.V., Andino, R., Switch from translation to RNA replication in a positive-stranded RNA virus (1998) Genes Dev., 12 (15), pp. 2293-2304 
504 |a Walter, B.L., Parsley, T.B., Ehrenfeld, E., Semler, B.L., Distinct poly(rC) binding protein KH domain determinants for poliovirus translation initiation and viral RNA replication (2002) J. Virol., 76 (23), pp. 12008-12022 
504 |a Barton, D.J., O'Donnell, B.J., Flanegan, J.B., 5′ cloverleaf in poliovirus RNA is a cis-acting replication element required for negative strand synthesis (2001) EMBO J., 20 (6), pp. 1439-1448 
504 |a Herold, J., Andino, R., Poliovirus RNA replication requires genome circularization through a protein-protein bridge (2001) Mol. Cell, 7 (3), pp. 581-591 
504 |a Toyoda, H., Franco, D., Fujita, K., Paul, A.V., Wimmer, E., Replication of poliovirus requires binding of the poly(rC) binding protein to the cloverleaf as well as to the adjacent C-rich spacer sequence between the cloverleaf and the internal ribosomal entry site (2007) J. Virol., 81 (18), pp. 10017-10028 
504 |a Sharma, N., Ogram, S.A., Morasco, B.J., Spear, A., Chapman, N.M., Flanegan, J.B., Functional role of the 5′ terminal cloverleaf in Coxsackievirus RNA replication (2009) Virology, 393 (2), pp. 238-249 
504 |a Bomsztyk, K., Denisenko, O., Ostrowski, J., hnRNP K: One protein multiple processes (2004) Bioessays, 26 (6), pp. 629-638 
504 |a Lin, J.Y., Li, M.L., Huang, P.N., Chien, K.Y., Horng, J.T., Shih, S.R., Heterogeneous nuclear ribonuclear protein K interacts with the enterovirus 71 5′ untranslated region and participates in virus replication (2008) J. Gen. Virol., 89 (10), pp. 2540-2549 
504 |a Shih, S.R., Stollar, V., Li, M.L., Host factors in enterovirus 71 replication (2011) J. Virol., 85 (19), pp. 9658-9666. , Complete revision of the roles of different host factors, including hnRNPs, in the replication of enterovirus 71 
504 |a Paranjape, S.M., Harris, E., Y box-binding protein-1 binds to the dengue virus 3′-untranslated region and mediates antiviral effects (2007) J. Biol. Chem., 282 (42), pp. 30497-30508 
504 |a Agis-Juárez, R.A., Galván, I., Medina, F., Polypyrimidine tract-binding protein is relocated to the cytoplasm and is required during dengue virus infection in Vero cells (2009) J. Gen. Virol., 90 (12), pp. 2893-2901 
504 |a Chang, C.J., Luh, H.W., Wang, S.H., Lin, H.J., Lee, S.C., Hu, S.T., The heterogeneous nuclear ribonucleoprotein K (hnRNP K) interacts with dengue virus core protein (2001) DNA Cell Biol., 20 (9), pp. 569-577 
504 |a Noisakran, S., Sengsai, S., Thongboonkerd, V., Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein (2008) Biochem. Biophys. Res. Commun., 372 (1), pp. 67-72 
504 |a Katoh, H., Mori, Y., Kambara, H., Heterogeneous nuclear ribonucleoprotein A2 participates in the replication of Japanese encephalitis virus through an interaction with viral proteins and RNA (2011) J. Virol., 85 (21), pp. 10976-10988. , Constitutes a detailed analysis of the involvement of hnRNP A2 in different stages of the replication of the flavivirus Japanese encephalitis virus 
504 |a Wang, L., Jeng, K.S., Lai, M.M., Poly(C)-binding protein 2 interacts with sequences required for viral replication in the hepatitis C virus (HCV) 5′ untranslated region and directs HCV RNA replication through circularizing the viral genome (2011) J. Virol., 85 (16), pp. 7954-7964. , Meticulous study that investigates the interaction of an hnRNP (PCBP2) with viral components and its relevance to virus replication 
504 |a Xin, Z., Han, W., Zhao, Z., PCBP2 enhances the antiviral activity of IFN-α against HCV by stabilizing the mRNA of STAT1 and STAT2 (2011) PLoS One, 6 (10), pp. e25419 
504 |a Ito, T., Lai, M.M.C., An internal polypyrimidine-tract-binding protein-binding site in the hepatitis C virus RNA attenuates translation, which is relieved by the 3V-untranslated sequence (1999) Virology, 254 (2), pp. 288-296 
504 |a Anwar, A., Ali, N., Tanveer, R., Siddiqui, A., Demonstration of functional requirement of polypyrimidine tract-binding protein by SELEX RNA during hepatitis C virus internal ribosome entry site mediated translation initiation (2000) J. Biol. Chem., 275 (44), pp. 34231-34235 
504 |a Domitrovich, A.M., Diebel, K.W., Ali, N., Sarker, S., Siddiqui, A., Role of la autoantigen and polypyrimidine tract-binding protein in HCV replication (2005) Virology, 335 (1), pp. 72-86 
504 |a Aizaki, H., Choi, K.S., Liu, M., Li, Y.J., Lai, M.M., Polypyrimidine-tract-binding protein is component of the HCV RNA replication complex and necessary for RNA synthesis (2006) J. Biomed. Sci., 13 (4), pp. 469-480 
504 |a Liu, H.M., Aizaki, H., Choi, K.S., Machida, K., Ou, J.J., Lai, M.M., SYNCRIP (synaptotagmin-binding, cytoplasmic RNA-interacting protein) is a host factor involved in hepatitis C virus RNA replication (2009) Virology, 386 (2), pp. 249-256 
504 |a Sola, I., Galán, C., Mateos-Gómez, P.A., The polypyrimidine tract-binding protein affects coronavirus RNA accumulation levels and relocalizes viral RNAs to novel cytoplasmic domains different from replication-transcription sites (2011) J. Virol., 85 (10), pp. 5136-5149. , Very interesting article that examines the participation of hnRNP I in the complex processes of coronavirus RNA replication and transcription 
504 |a Li, H.P., Huang, P., Park, S., Lai, M.M., Polypyrimidine tract-binding protein binds to the leader RNA of mouse hepatitis virus and serves as a regulator of viral transcription (1999) J. Virol., 73 (1), pp. 772-777 
504 |a Huang, P., Lai, M.M., Polypyrimidine tract-binding protein binds to the complementary strand of the mouse hepatitis virus 3′ untranslated region, thereby altering RNA conformation (1999) J. Virol., 73 (11), pp. 9110-9116 
504 |a Choi, K.S., Huang, P., Lai, M.M., Polypyrimidine-tract-binding protein affects transcription but not translation of mouse hepatitis virus RNA (2002) Virology, 303 (1), pp. 58-68 
504 |a Shi, S.T., Yu, G.Y., Lai, M.M., Multiple type A/B heterogeneous nuclear ribonucleoproteins (hnRNPs) can replace hnRNP A1 in mouse hepatitis virus RNA synthesis (2003) J. Virol., 77 (19), pp. 10584-10593 
504 |a Li, H.P., Zhang, X., Duncan, R., Comai, L., Lai, M.M., Heterogeneous nuclear ribonucleoprotein A1 binds to the transcription-regulatory region of mouse hepatitis virus RNA (1997) Proc. Natl Acad. Sci. USA, 94 (18), pp. 9544-9549 
504 |a Shi, S.T., Huang, P., Li, H.P., Lai, M.M., Heterogeneous nuclear ribonucleoprotein A1 regulates RNA synthesis of a cytoplasmic virus (2000) EMBO J., 19 (17), pp. 4701-4711 
504 |a Shen, X., Masters, P.S., Evaluation of the role of heterogeneous nuclear ribonucleoprotein A1 as a host factor in murine coronavirus discontinuous transcription and genome replication (2001) Proc. Natl Acad. Sci. USA, 98 (5), pp. 2717-2722 
504 |a Choi, K.S., Mizutani, A., Lai, M.M., SYNCRIP, a member of the heterogeneous nuclear ribonucleoprotein family, is involved in mouse hepatitis virus RNA synthesis (2004) J. Virol., 78 (23), pp. 13153-13162 
504 |a Galán, C., Sola, I., Nogales, A., Host cell proteins interacting with the 3′ end of TGEV coronavirus genome influence virus replication (2009) Virology, 391 (2), pp. 304-314 
504 |a Burnham, A.J., Gong, L., Hardy, R.W., Heterogeneous nuclear ribonuclear protein K interacts with Sindbis virus nonstructural proteins and viral subgenomic mRNA (2007) Virology, 367 (1), pp. 212-221 
504 |a Lin, J.Y., Shih, S.R., Pan, M., hnRNP A1 interacts with the 5′ untranslated regions of enterovirus 71 and Sindbis virus RNA and is required for viral replication (2009) J. Virol., 83 (12), pp. 6106-6114 
504 |a Gui, H., Lu, C.W., Adams, S., Stollar, V., Li, M.L., hnRNP A1 interacts with the genomic and subgenomic RNA promoters of Sindbis virus and is required for the synthesis of G and SG RNA (2010) J. Biomed. Sci., 17, p. 59 
504 |a Dinh, P.X., Beura, L.K., Panda, D., Das, A., Pattnaik, A.K., Antagonistic effects of cellular poly(C) binding proteins on vesicular stomatitis virus gene expression (2011) J. Virol., 85 (18), pp. 9459-9471 
504 |a Jorba, N., Juarez, S., Torreira, E., Gastaminza, P., Zamarreño, N., Albar, J.P., Ortín, J., Analysis of the interaction of influenza virus polymerase complex with human cell factors (2008) Proteomics, 8 (10), pp. 2077-2088 
504 |a Lee, J.H., Kim, S.H., Pascua, P.N., Direct interaction of cellular hnRNP-F and NS1 of influenza A virus accelerates viral replication by modulation of viral transcriptional activity and host gene expression (2010) Virology, 397 (1), pp. 89-99 
504 |a Jablonski, J.A., Caputi, M., Role of cellular RNA processing factors in human immunodeficiency virus type 1 mRNA metabolism, replication, and infectivity (2009) J. Virol., 83 (2), pp. 981-992. , Investigates the role of different RNA processing factors, including hnRNPs, in mRNA processing during HIV replication 
504 |a Walter, B.L., Nguyen, J.H., Ehrenfeld, E., Semler, B.L., Differential utilization of poly(rC) binding protein 2 in translation directed by picornavirus IRES elements (1999) RNA, 5 (12), pp. 1570-1585 
504 |a Blyn, L.B., Towner, J.S., Semler, B.L., Ehrenfeld, E., Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA (1997) J. Virol., 71 (8), pp. 6243-6246 
504 |a Sean, P., Nguyen, J.H., Semler, B.L., The linker domain of poly(rC) binding protein 2 is a major determinant in poliovirus cap-independent translation (2008) Virology, 378 (2), pp. 243-253 
504 |a Hunt, S.L., Jackson, R.J., Polypyrimidine-tract-binding protein (PTB) is necessary, but not sufficient, for efficient internal initiation of translation of human rhinovirus-2 RNA (1999) RNA, 5 (3), pp. 344-359 
504 |a Gosert, R., Chang, K.H., Rijnbrand, R., Yi, M., Sangar, D.V., Lemon, S.M., Transient expression of cellular polypyrimidine-tract binding protein stimulates cap-independent translation directed by both picornaviral and flaviviral internal ribosome entry sites in vivo (2000) Mol. Cell Biol., 20 (5), pp. 1583-1595 
504 |a Niepmann, M., Petersen, A., Meyer, K., Beck, E., Functional involvement of polypyrimidine-tract-binding protein in translation initiation complexes with the internal ribosome entry site of foot-and mouth disease virus (1997) J. Virol., 71 (11), pp. 8330-8339 
504 |a Kaminski, A., Jackson, R.J., The polypyrimidine-tract binding protein (PTB) requirement for internal initiation of translation of cardiovirus RNAs is conditional rather than absolute (1998) RNA, 4 (6), pp. 626-638 
504 |a Kafasla, P., Morgner, N., Robinson, C.V., Jackson, R.J., Polypyrimidine tract-binding protein stimulates the poliovirus IRES by modulating eIF4G binding (2010) EMBO J., 29 (21), pp. 3710-3722. , Constitutes a meticulous study on the mechanism of hnRNP modulation of the poliovirus internal ribosome entry site-dependent translation process 
504 |a Cammas, A., Pileur, F., Bonnal, S., Cytoplasmic relocalization of heterogeneous nuclear ribonucleoprotein A1 controls translation initiation of specific mRNAs (2007) Mol. Biol. Cell, 18 (12), pp. 5048-5059 
504 |a Fukushi, S., Okada, M., Kageyama, T., Hoshino, F.B., Nagai, K., Katayama, K., Interaction of poly(rC)-binding protein 2 with the 5′-terminal stem loop of the hepatitis C-virus genome (2001) Virus Res., 73 (1), pp. 67-79 
504 |a Murray, K.E., Roberts, A.W., Barton, D.J., Poly(rC) binding proteins mediate poliovirus mRNA stability (2001) RNA, 7 (8), pp. 1126-1141 
504 |a Fontanes, V., Raychaudhuri, S., Dasgupta, A., A cell-permeable peptide inhibits hepatitis C virus replication by sequestering IRES transacting factors (2009) Virology, 394 (1), pp. 82-90 
504 |a Kim, J.H., Paek, K.Y., Ha, S.H., A cellular RNA-binding protein enhances internal ribosomal entry site-dependent translation through an interaction downstream of the hepatitis C virus polyprotein initiation codon (2004) Mol. Cell Biol., 24 (18), pp. 7878-7890 
504 |a Park, S.M., Paek, K.Y., Hong, K.Y., Translation-competent 48S complex formation on HCV IRES requires the RNA-binding protein NSAP1 (2011) Nucleic Acids Res., 39 (17), pp. 7791-7802 
504 |a Hwang, B., Lim, J.H., Hahm, B., Jang, S.K., Lee, S.W., hnRNP L is required for the translation mediated by HCV IRES (2009) Biochem. Biophys. Res. Commun., 378 (3), pp. 584-588 
504 |a Paek, K.Y., Kim, C.S., Park, S.M., Kim, J.H., Jang, S.K., RNA-binding protein hnRNP D modulates internal ribosome entry site-dependent translation of hepatitis C virus RNA (2008) J. Virol., 82 (24), pp. 12082-12093 
504 |a Bolinger, C., Boris-Lawrie, K., Mechanisms employed by retroviruses to exploit host factors for translational control of a complicated proteome (2009) Retrovirology, 6, p. 8 
504 |a Hadian, K., Vincendeau, M., Mäusbacher, N., Identification of a heterogeneous nuclear ribonucleoprotein-recognition region in the HIV Rev protein (2009) J. Biol. Chem., 284 (48), pp. 33384-33391 
504 |a Lund, N., Milev, M.P., Wong, R., Differential effects of hnRNP D/AUF1 isoforms on HIV-1 gene expression (2011) Nucleic Acids Res., , doi:10.1093/nar/gkr1238 (Epub ahead of print) 
504 |a Woolaway, K., Asai, K., Emili, A., Cochrane, A., hnRNP E1 and E2 have distinct roles in modulating HIV-1 gene expression (2007) Retrovirology, 4, p. 28 
504 |a Schaub, M.C., Lopez, S.R., Caputi, M., Members of the heterogeneous nuclear ribonucleoprotein H family activate splicing of an HIV-1 splicing substrate by promoting formation of ATP-dependent spliceosomal complexes (2007) J. Biol. Chem., 282 (18), pp. 13617-13626 
504 |a Okunola, H.L., Krainer, A.R., Cooperative-binding and splicing-repressive properties of hnRNP A1 (2009) Mol. Cell Biol., 29 (20), pp. 5620-5631 
504 |a Najera, I., Krieg, M., Karn, J., Synergistic stimulation of HIV-1 rev-dependent export of unspliced mRNA to the cytoplasm by hnRNP A1 (1999) J. Mol. Biol., 285 (5), pp. 1951-1964 
504 |a Dodon, M.D., Hamaia, S., Martin, J., Gazzolo, L., Heterogeneous nuclear ribonucleoprotein A1 interferes with the binding of the human T cell leukemia virus type 1 rex regulatory protein to its response element (2002) J. Biol. Chem., 277 (21), pp. 18744-18752 
504 |a Milligan, S.G., Veerapraditsin, T., Ahamet, B., Mole, S., Graham, S.V., Analysis of novel human papillomavirus type 16 late mRNAs in differentiated W12 cervical epithelial cells (2007) Virology, 360 (1), pp. 172-181 
504 |a Schwartz, S., HPV-16 RNA processing (2008) Front. Biosci., 13, pp. 5880-5891 
504 |a Sanford, J.R., Ellis, J., Cáceres, J.F., Multiple roles of arginine/serine-rich splicing factors in RNA processing (2005) Biochem. Soc. Trans., 33 (3), pp. 443-446 
504 |a Zhao, X., Fay, J., Lambkin, H., Schwartz, S., Identification of a 17-nucleotide splicing enhancer in HPV-16 L1 that counteracts the effect of multiple hnRNP A1-binding splicing silencers (2007) Virology, 369 (2), pp. 351-363 
504 |a Oberg, D., Fay, J., Lambkin, H., Schwartz, S., A downstream polyadenylation element in human papillomavirus type 16 L2 encodes multiple GGG motifs and interacts with hnRNP H (2005) J. Virol., 79 (14), pp. 9254-9269 
504 |a Somberg, M., Zhao, X., Fröhlich, M., Evander, M., Schwartz, S., Polypyrimidine tract binding protein induces human papillomavirus type 16 late gene expression by interfering with splicing inhibitory elements at the major late 5′ splice site, SD3632 (2008) J. Virol., 82 (7), pp. 3665-3678. , Describes the role of an hnRNP (PTB) as a splicing factor that controls late gene expression of HPV16 and its association with latent infection 
504 |a Bériault, V., Clément, J.F., Lévesque, K., A late role for the association of hnRNP A2 with the HIV-1 hnRNP A2 response elements in genomic RNA, Gag, and Vpr localization (2004) J. Biol. Chem., 279 (42), pp. 44141-44153 
504 |a Lévesque, K., Halvorsen, M., Abrahamyan, L., Trafficking of HIV-1 RNA is mediated by heterogeneous nuclear ribonucleoprotein A2 expression and impacts on viral assembly (2006) Traffic, 7 (9), pp. 1177-1193 
504 |a Schmidt, T., Striebinger, H., Haas, J., Bailer, S.M., The heterogeneous nuclear ribonucleoprotein K is important for Herpes simplex virus-1 propagation (2010) FEBS Lett., 584 (20), pp. 4361-4365 
504 |a Kanlaya, R., Pattanakitsakul, S.N., Sinchaikul, S., Chen, S.T., Thongboonkerd, V., Vimentin interacts with heterogeneous nuclear ribonucleoproteins and dengue nonstructural protein 1 and is important for viral replication and release (2010) Mol. Biosyst., 6 (5), pp. 795-806 
504 |a Bailey, D., Karakasiliotis, I., Vashist, S., Functional analysis of RNA structures present at the 3′ extremity of the murine norovirus genome: The variable polypyrimidine tract plays a role in viral virulence (2010) J. Virol., 84 (6), pp. 2859-2870 
504 |a Guest, S., Pilipenko, E., Sharma, K., Chumakov, K., Roos, R.P., Molecular mechanisms of attenuation of the Sabin strain of poliovirus type 3 (2004) J. Virol., 78 (20), pp. 11097-11107 
504 |a Bortz, E., Westera, L., Maamary, J., Host- and strain-specific regulation of influenza virus polymerase activity by interacting cellular proteins (2011) MBio, 2, pp. e00151-e00161 
504 |a Zhao, X., Rush, M., Schwartz, S., Identification of an hnRNP A1-dependent splicing silencer in the human papillomavirus type 16 L1 coding region that prevents premature expression of the late L1 gene (2004) J. Virol., 78 (20), pp. 10888-108905 
504 |a Baccala, R., Gonzalez-Quintial, R., Lawson, B.R., Stern, M.E., Kono, D.H., Beutler, B., Sensors of the innate immune system: Their mode of action (2009) Nat. Rev. Rheumatol., 5 (8), pp. 448-456 
504 |a Thompson, M.R., Kaminski, J.J., Kurt-Jones, E.A., Fitzgerald, K.A., Pattern recognition receptors and the innate immune response to viral infection (2011) Viruses, 3 (6), pp. 920-940 
504 |a Platanias, L.C., Mechanisms of type-I- and type-II-interferon-mediated signalling (2005) Nat. Rev. Immunol., 5 (5), pp. 375-386 
504 |a Yao, L., Yan, X., Dong, H., Nelson, D.R., Liu, C., Li, X., Expression of an IRF-3 fusion protein and mouse estrogen receptor, inhibits hepatitis C viral replication in RIG-I-deficient Huh 7.5 cells (2011) Virol. J., 21 (8), p. 445 
504 |a Shabman, R.S., Gulcicek, E.E., Stone, K.L., Basler, C.F., The Ebola virus VP24 protein prevents hnRNP C1/C2 binding to karyopherin a1 and partially alters its nuclear import (2011) J. Infect. Dis., 204, pp. S904-S910. , Suppl. 3 
504 |a Beura, L.K., Dinh, P.X., Osorio, F.A., Pattnaik, A., Cellular poly(c) binding proteins 1 and 2 interact with porcine reproductive and respiratory syndrome virus nonstructural protein 1b and support viral replication (2011) J. Virol., 85 (24), pp. 12939-12949 
504 |a Das, S., Ward, S.V., Markle, D., Samuel, C.E., DNA damage-binding proteins and heterogeneous nuclear ribonucleoprotein A1 function as constitutive KCS element components of the interferon-inducible RNA-dependent protein kinase promoter (2004) J. Biol. Chem., 279 (8), pp. 7313-7321 
504 |a Dhar, D., Venkataramana, M., Ponnuswamy, A., Das, S., Role of polypyrimidine tract binding protein in mediating internal initiation of translation of interferon regulatory factor 2 RNA (2009) PLoS One, 4 (9), p. 7049 
504 |a Söderberg, M., Raffalli-Mathieu, F., Lang, M.A., Identification of a regulatory cis-element within the 3′-untranslated region of the murine inducible nitric oxide synthase (iNOS) mRNA; interaction with heterogeneous nuclear ribonucleoproteins I and L and role in the iNOS gene expression (2007) Mol. Immunol., 44 (4), pp. 434-442 
504 |a Gaudreau, M.C., Heyd, F., Bastien, R., Wilhelm, B., Möröy, T., Alternative splicing controlled by heterogeneous nuclear ribonucleoprotein L regulates development, proliferation, and migration of thymic pre-T cells (2012) J. Immunol., , doi:10.4049/jimmunol.1103142 (Epub ahead of print) 
504 |a Motta-Mena, L.B., Smith, S.A., Mallory, M.J., Jackson, J., Wang, J., Lynch, K.W., A disease-associated polymorphism alters splicing of the human CD45 phosphatase gene by disrupting combinatorial repression by heterogeneous nuclear ribonucleoproteins (hnRNPs) (2011) J. Biol. Chem., 286 (22), pp. 20043-20053 
504 |a Triboulet, R., Mari, B., Lin, Y.-L., Suppression of microRNA-silencing pathway by HIV-1 during virus replication (2007) Science, 315 (5818), pp. 1579-1582 
504 |a Gregory, R.I., Yan, K., Amuthan, G., Chendrimada, T., Doratotaj, B., The Microprocessor complex mediates the genesis of microRNAs (2004) Nature, 432 (7014), pp. 235-240 
504 |a Buratti, E., Baralle, F.E., The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation (2010) RNA Biol., 7 (4), pp. 420-429 
504 |a Saumet, A., Lecellier, C.-H., Anti-viral RNA silencing: Do we look like plants? (2006) Retrovirology, 3, p. 3 
504 |a Chiang, K., Rice, A.P., Mini ways to stop a virus: MicroRNAs and HIV-1 replication (2011) Future Virol., 6 (2), pp. 209-221 
520 3 |a The study of virus-host interactions is a major goal in molecular virology and provides new effective targets for antiviral therapies. Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a group of cellular RNA-binding proteins localized predominantly within the nucleus, which participate in gene transcription and subsequent RNA post-transcriptional modifications. The interaction between hnRNPs and viral components was extensively demonstrated, as well as the ability of virus infections to alter the intracellular localization or the level of expression of different hnRNPs. The involvement of these proteins in the replication of numerous viruses including members from the Retroviridae, Flaviviridae, Coronaviridae, Arenaviridae, Rhabdoviridae, Papillomaviridae, Orthomyxoviridae, Picornaviridae, Togaviridae and Herpesviridae families, has been reported. In order to gain an increased understanding of the interactions between virus and cell that result in the productive infection of the latter, in this review we discuss the main findings about the role of hnRNPs in different steps of viral replication, such as RNA synthesis, translation, RNA processing and egress of newly assembled progeny virus. © 2012 Future Medicine Ltd.  |l eng 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN 
690 1 0 |a HNRNP 
690 1 0 |a PCBP 
690 1 0 |a PTB 
690 1 0 |a REPLICATION 
690 1 0 |a RNA 
690 1 0 |a SPLICING 
690 1 0 |a TRANSLATION 
690 1 0 |a GENOMIC RNA 
690 1 0 |a GUANOSINE TRIPHOSPHATASE 
690 1 0 |a HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN 
690 1 0 |a HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A 
690 1 0 |a HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN C 
690 1 0 |a HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN E2 
690 1 0 |a HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN I 
690 1 0 |a HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN Q 
690 1 0 |a NONSTRUCTURAL PROTEIN 5 
690 1 0 |a PROTEIN P62 
690 1 0 |a RAN PROTEIN 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a VIRUS PROTEIN 
690 1 0 |a AVIAN INFLUENZA VIRUS 
690 1 0 |a CELL DIVISION 
690 1 0 |a CELLULAR DISTRIBUTION 
690 1 0 |a CORONAVIRUS 
690 1 0 |a COXSACKIE VIRUS 
690 1 0 |a DENGUE VIRUS 
690 1 0 |a FLAVIVIRUS 
690 1 0 |a GENE SILENCING 
690 1 0 |a HERPES VIRUS 
690 1 0 |a HOST PATHOGEN INTERACTION 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN IMMUNODEFICIENCY VIRUS 1 
690 1 0 |a HUMAN PAPILLOMAVIRUS TYPE 16 
690 1 0 |a IMMUNE RESPONSE 
690 1 0 |a IN VITRO STUDY 
690 1 0 |a IN VIVO STUDY 
690 1 0 |a JAPANESE ENCEPHALITIS VIRUS 
690 1 0 |a NONHUMAN 
690 1 0 |a ORTHOMYXOVIRUS 
690 1 0 |a PAPILLOMA VIRUS 
690 1 0 |a PATHOGENESIS 
690 1 0 |a PICORNAVIRUS 
690 1 0 |a PICORNAVIRUS INFECTION 
690 1 0 |a POLIOMYELITIS 
690 1 0 |a POLIOMYELITIS VIRUS 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a PROTEIN INTERACTION 
690 1 0 |a REVIEW 
690 1 0 |a RHABDOVIRUS 
690 1 0 |a RHINOVIRUS 
690 1 0 |a RNA PROCESSING 
690 1 0 |a RNA REPLICATION 
690 1 0 |a RNA SPLICING 
690 1 0 |a RNA SYNTHESIS 
690 1 0 |a RNA TRANSLATION 
690 1 0 |a SINDBIS VIRUS 
690 1 0 |a TOGAVIRUS 
690 1 0 |a VIROGENESIS 
690 1 0 |a VIRUS REPLICATION 
690 1 0 |a ARENAVIRIDAE 
690 1 0 |a CORONAVIRIDAE 
690 1 0 |a FLAVIVIRIDAE 
690 1 0 |a HERPESVIRIDAE 
690 1 0 |a ORTHOMYXOVIRIDAE 
690 1 0 |a PAPILLOMAVIRIDAE 
690 1 0 |a PICORNAVIRIDAE 
690 1 0 |a RETROVIRIDAE 
690 1 0 |a RHABDOVIRIDAE 
690 1 0 |a TOGAVIRIDAE 
650 1 7 |2 spines  |a VIRUS 
700 1 |a Scolaro, L.A. 
773 0 |d 2012  |g v. 7  |h pp. 575-591  |k n. 6  |p Future Virol.  |x 17460794  |t Future Virology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84862008186&doi=10.2217%2ffvl.12.48&partnerID=40&md5=25b51767aef2a7eca0cff523c4c5d191  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.2217/fvl.12.48  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_17460794_v7_n6_p575_Castilla  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17460794_v7_n6_p575_Castilla  |y Registro en la Biblioteca Digital 
961 |a paper_17460794_v7_n6_p575_Castilla  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70562