High salinity induces dehydrin accumulation in Chenopodium quinoa Willd. cv. Hualhuas embryos

Background and Aims: Chenopodium quinoa can grow at altitudes of 3,600-4,000 masl and is adapted to the highly arid conditions typical of the salty soils in the South American Altiplano, with less than 250 mm of annual rain and temperatures below 0°C. The aim of the study was to investigate the effe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Burrieza, H.P
Otros Autores: Koyro, H.-W, Tosar, L.M, Kobayashi, K., Maldonado, S.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14251caa a22011657a 4500
001 PAPER-9649
003 AR-BaUEN
005 20230518203935.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84860211570 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PLSOA 
100 1 |a Burrieza, H.P. 
245 1 0 |a High salinity induces dehydrin accumulation in Chenopodium quinoa Willd. cv. Hualhuas embryos 
260 |c 2012 
270 1 0 |m Maldonado, S.; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EGA Ciudad de Buenos Aires, Argentina; email: saram@bg.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Allagulova, C.R., Gilamov, F.R., Shakirova, F.M., Vakhitov, V.A., The plant dehydrins: structure and functions (2003) Biochemistry (Moscow), 68, pp. 945-951 
504 |a Alsheikh, M.K., Heyen, B.J., Randall, S.K., Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation (2003) J Biol Chem, 278, pp. 40882-40889 
504 |a Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F., Covarrubias, A.A., The enigmatic LEA proteins and other hydrophylins (2008) Plant Physiol, 148, pp. 6-24. , doi:10.1128/EC.3.4.966-975 
504 |a Bozzo, S., Retamal, C., Gel-perfect: geles unidimensionales. Un nuevo método densitométrico para computadores personales (1991) Arch. Biol Med. Exp, 24, p. 181 
504 |a Brini, F., Hanin, M., Lumbreras, V., Amara, I., Khoudi, H., Hassairi, A., Page's, M., Masmoudi, K., Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana (2007) Plant Cell Rep, 26, pp. 2017-2026. , doi:10.1007/s00299-007-0412-x 
504 |a Brini, F., Hanin, M., Lumbreras, V., Irar, S., Pages, Masmoudi, K., Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance (2007) Plant Sci, 172, pp. 20-28. , doi:10.1016/j.plantsci.2006.07.011 
504 |a Carjuzáa, P., Castellión, M., Distéfano, A.J., del Vas, M., Maldonado, S., Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Willd.) embryos (2008) Protoplasma, 233, pp. 149-156 
504 |a Close, T.J., Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins (1996) Physiol Plant, 97, pp. 795-803 
504 |a Close, T.J., Lammers, P.J., An osmotic stress protein of cyanobacteria is immunologically related to plant dehydrins (1993) Plant Physiol, 101, pp. 773-779 
504 |a Close, T.J., Kortt, A.A., Chandler, P.M., A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn (1989) Plant Mol Biol, 13, pp. 95-108 
504 |a Close, T.J., Fenton, R.D., Moonan, F., A view of plant dehydrins using antibodies specific to the carboxy terminal peptide (1993) Plant Mol Biol, 23, pp. 279-286 
504 |a Epstein, E., (1972) Mineral Nutrition of Plants: Principles and Perspectives, , New York: Wiley 
504 |a Gibeaut, D.M., Hulett, J., Cramer, G.R., Seemann, J.R., Maximal biomass of Arabidopsis thaliana using a simple, low maintenance hydroponic method and favorable environmental conditions (1997) Plant Physiol, 115, pp. 317-319 
504 |a Goday, A., Jensen, A.B., Culianez-Macia, F.A., Alba, M.M., Figueras, M., Serratosa, J., Torrent, M., Pagés, M., The maize abscissic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals (1994) Plant Cell, 6, pp. 351-360 
504 |a Godoy, J.A., Lunar, R., Torresschumann, S., Moreno, J., Rodrigo, R.M., Pintortoro, J.A., Expression, tissue distribution and subcellular-localization of dehydrin Tas14 in salt-stressed tomato plants (1994) Plant Mol Biol, 26, pp. 1921-1934 
504 |a Han, B., Kermode, A.R., Dehydrin-like proteins in castor bean seeds and seedlings are differentially produced in response to ABA and water-deficit-related stresses (1996) J Exp Bot, 47, pp. 933-939 
504 |a Harris, N., Spence, J., Oparka, J., General and enzyme histochemistry (1994) Plant Cell Biology a Practical Approach, pp. 51-68. , N. Harris and K. J. Oparka (Eds.), Oxford: Oxford University Press 
504 |a Harris, K.F., Pesic-van Esbroeck, Z., Duffus, J.E., Moderate-temperature polymerization of LR White in a nitrogen atmosphere (1995) Microsc Res Tech, 32, pp. 264-265 
504 |a Houde, M., Daniel, C., Lachapelle, M., Allard, F., Laliberte, S., Sarhan, F., Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues (1995) Plant J, 8, pp. 583-593 
504 |a Hundertmark, M., Hincha, D.K., LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana (2008) BMC Genomics, 9, pp. 118-139. , doi:10.1186/1471-2164-9-118 
504 |a Irar, S., Oliveira, E., Pagès, M., Goday, A., Towards the identification of late embryogenic-abundant phosphoproteome in Arabidopsis by 2-DE and MS (2006) Proteomics, 6 (S1), pp. S175-S185 
504 |a Jacobsen, S.-E., Quinoa's world potential (2007) Breeding of Neglected and under-Utilized Crops, Spices and Herbs, pp. 109-122. , S. Ochatt and S. M. Jain (Eds.), Enfield: Science Publishers 
504 |a Jacobsen, S.E., Quispe, H., Mujica, A., Quinoa: An alternative crop for saline soils in the Andes (2001) Scientist and Farmer-Partners in Research for the 21st Century, pp. 403-408. , CIP Program Report 1999-2000 
504 |a Jensen, A.B., Goday, A., Figueras, M., Jessop, A.C., Pages, M., Phosphorylation mediates the nuclear targeting of the maize RAB17 protein (1998) Plant J, 13, pp. 691-697 
504 |a Koyro, H.-W., Study of potential cash crop halophytes in a quick check system (2003) Tasks Veg Sci, 38, pp. 5-17 
504 |a Koyro, H.-W., Eisa, S.S., Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd (2008) Plant Soil, 302, pp. 79-90. , doi:10.1007/s11104-007-9457-4 
504 |a Lisse, T., Bartels, D., Kalbitzer, H.R., Jaenicke, R., The recombinant dehydrin like desiccation stress protein from the resurrection plant Craterostigma plantagineum displays no defined three-dimensional structure in its native state (1996) Biol Chem, 377, pp. 555-561 
504 |a Mundy, J., Chua, N.H., Abscisic acid and water-stress induce the expression of a novel rice gene (1988) Embo J, 7, pp. 2279-2286 
504 |a Nylander, M., Svensson, J., Palva, E.T., Welin, B.V., Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana (2001) Plant Mol Biol, 45, pp. 263-279 
504 |a Plana, M., Itarte, E., Eritja, R., Goday, A., Pages, M., Martinez, M.C., Phosphorylation of maize RAB-17 protein by casein kinase 2 (1991) J Biol Chem, 266, pp. 22510-22514 
504 |a Retamal, C.A., Thiebaut, P., Alves, E.W., Protein purification from polyacrylamide gels by sonication extraction (1999) Anal Biochem, 268, pp. 15-20 
504 |a Riera, M., Figueras, M., López, C., Goday, A., Pagès, M., Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize (2004) Proc Natl Acad Sci USA, 101, pp. 9879-9884 
504 |a Rinne, P.L.H., Kaikuranta, P.L.M., van der Plas, L.H.W., van der Schoot, C., Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration (1999) Planta, 209, pp. 377-388 
504 |a Rorat, T., Plant dehydrins tissue location, structure and function (2006) Cell Mol Biol Lett, 11, pp. 536-556. , doi:10.2478/s11658-006-0044-0 
504 |a Rorat, T., Grygorowicz, W.J., Irzykowski, W., Rey, P., Expression of KS-type dehydrins is primarily regulated by factors related to organ type and leaf developmental stage under vegetative growth (2004) Planta, 218, pp. 878-885 
504 |a Rorat, T., Szabala, B.M., Grygorowicz, W.J., Wojtowicz, B., Yin, Z., Rey, P., Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species (2006) Planta, 224, pp. 205-221 
504 |a Saavedra, L., Svensson, J., Carballo, V., Izmendi, D., Welin, B., Vidal, S., A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance (2006) Plant J, 45, pp. 237-249 
504 |a Spence, J., Plant histology (2001) Plant Cell Biology, pp. 189-206. , 2nd edn., C. Hawes and B. Satiat-Jeunemaitre (Eds.), Oxford: Oxford University Press 
504 |a Still, D.W., Kovach, D.A., Bradford, K.J., Development of desiccation tolerance during embryogenesis in Rice (Oryza sativa) and Wild Rice (Zizania palustris) (Dehydrin Expression, Abscisic Acid Content, and Sucrose Accumulation) (1994) Plant Physiol, 104 (2), pp. 431-438 
504 |a Tapia, M.E., Zonificación agroecológica del cultivo de la quinoa (Chenopodium quinoa Will d.) Primer taller internacional sobre quinua: Recursos genéticos y sistemas di produccion (1999) Regional Office for Latin America and the Caribbean, Food and Agriculture Organization of the United Nations, Santiago, Chile, , http://www.rlc.fao.org/prior/segalim/prodalim/prodveg/cdrom/contenido/libro14/cap1.2.htm, Lima, Perú. Accessed 14 May 2010 
504 |a Wilson, C., Read, J.J., Abo-Kassem, E., Effect of mixed-salt salinity on growth and ion relations of a quinoa and a wheat variety (2002) J Plant Nutr, 25, pp. 2689-2704 
520 3 |a Background and Aims: Chenopodium quinoa can grow at altitudes of 3,600-4,000 masl and is adapted to the highly arid conditions typical of the salty soils in the South American Altiplano, with less than 250 mm of annual rain and temperatures below 0°C. The aim of the study was to investigate the effect of salinity on the dehydrin content of mature embryos harvested from salt-stressed Chenopodium quinoa cv. Hualhuas plants grown at 100 to 500 mM NaCl. To date, no studies exist on the dehydrins of seeds from salt-stressed plants, although dehydrins in the root, stems and leaves have been reported as an adaptation to water deficit produced by salinity. Methods: Dehydrin-like protein detection was carried out with an antiserum raised against a highly-conserved lysine-rich 15-amino acid sequence known as the K-segment, which is capable of recognizing proteins immunologically related to the dehydrin family. Results: Dehydrins were analyzed in embryos by both western blot and in situ immunolocalization. Western blot analysis detected at least four dehydrins (55, 50, 34, and 30 kDa) in seeds harvested from quinoa salt-stressed plants treated under a wide range of salinities. The 30 kDa dehydrin increased its accumulation in both 300 and 500 mM NaCl growth conditions as revealed by densitometric analyses. Dehydrin subcellular localization was mostly nuclear at 500 mM of NaCl. A phosphatase treatment of protein extracts caused a mobility shift of the 34 and 30 kDa dehydrin bands suggesting a putative modulation mechanism based on protein phosphorylation. Conclusions: We propose that these novel observations regarding dehydrin accumulation, subcellular localization and phosphorylation state are related to the high salt stress tolerant phenotype previously reported on this cultivar. © 2011 Springer Science+Business Media B.V.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, X125 
536 |a Detalles de la financiación: Acknowledgments We thank Timothy Close for supplying the antidehydrin antiserum and peptide salt. Funding for this work was from the Universidad de Buenos Aires (X125 to S.M).). SM and KK and LJMT are career members of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. HB was supported by a Universidad de Buenos Aires (UBA) doctoral research fellowship. 
593 |a Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Univ., C1428EGA Ciudad de Buenos Aires, Argentina 
593 |a Institute for Plant Ecology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany 
593 |a Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Univ., C1428EGA Ciudad de Buenos Aires, Argentina 
690 1 0 |a CHENOPODIUM QUINOA 
690 1 0 |a DEHYDRIN IN SITU IMMUNOLOCALIZATION 
690 1 0 |a DEHYDRIN WESTERN BLOT 
690 1 0 |a EMBRYO DEHYDRINS 
690 1 0 |a SALT STRESS 
690 1 0 |a ACCUMULATION 
690 1 0 |a ALTITUDE 
690 1 0 |a AMINO ACID 
690 1 0 |a ARID ENVIRONMENT 
690 1 0 |a CULTIVAR 
690 1 0 |a DICOTYLEDON 
690 1 0 |a DROUGHT STRESS 
690 1 0 |a EMBRYO 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a IMMUNOASSAY 
690 1 0 |a LOW TEMPERATURE 
690 1 0 |a PHENOTYPE 
690 1 0 |a PROTEIN 
690 1 0 |a SALINE SOIL 
690 1 0 |a SALINITY TOLERANCE 
690 1 0 |a SEED 
690 1 0 |a SODIUM CHLORIDE 
690 1 0 |a ALTIPLANO 
690 1 0 |a CHENOPODIUM QUINOA 
700 1 |a Koyro, H.-W. 
700 1 |a Tosar, L.M. 
700 1 |a Kobayashi, K. 
700 1 |a Maldonado, S. 
773 0 |d 2012  |g v. 354  |h pp. 69-79  |k n. 1-2  |p Plant Soil  |x 0032079X  |t Plant and Soil 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84860211570&doi=10.1007%2fs11104-011-1045-y&partnerID=40&md5=fb334d5b8b52e2afb5bca5e9187b3f46  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11104-011-1045-y  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0032079X_v354_n1-2_p69_Burrieza  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0032079X_v354_n1-2_p69_Burrieza  |y Registro en la Biblioteca Digital 
961 |a paper_0032079X_v354_n1-2_p69_Burrieza  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70602