The Killing-Yano equation on Lie groups

In this paper we study 2-forms which are solutions of the Killing-Yano equation on Lie groups endowed with a left invariant metric having various curvature properties. We prove a general result for 2-step nilpotent Lie groups and as a corollary we obtain a nondegenerate solution of the Killing-Yano...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Barberis, M.L
Otros Autores: Dotti, I.G, Santillán, O.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05072caa a22006137a 4500
001 PAPER-9765
003 AR-BaUEN
005 20230518203944.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84857870005 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Barberis, M.L. 
245 1 4 |a The Killing-Yano equation on Lie groups 
260 |c 2012 
270 1 0 |m Barberis, M.L.; FaMAF, Universidad Nacional de Córdoba, Cuidad Universitaria, 5000 Córdoba, Argentina; email: barberis@famaf.unc.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Andrada, A., Barberis, M.L., Dotti, I., Left Invariant Conformal KillingYano Tensors 
504 |a De Azcarraga, J.A., Izquierdo, J.M., MacFarlane, A.J., (2001) Nucl. Phys., 604, pp. 75-91 
504 |a Benn, I.M., Charlton, P., Kress, J., Debye potentials for Maxwell and Dirac fields from a generalization of the KillingYano equation (1997) J. Math. Phys., 38, pp. 4504-4527 
504 |a Benn, I.M., Charlton, P., Dirac symmetry operators from conformal KillingYano tensors (1997) Class. Quantum Grav., 14, pp. 1037-1042 
504 |a Belgun, F., Moroianu, A., Semmelmann, U., Killing forms on symmetric spaces (2006) Differential Geometry and its Application, 24 (3), pp. 215-222. , DOI 10.1016/j.difgeo.2005.09.007, PII S0926224505000872 
504 |a Berndt, J., Tricerri, F., Vanhecke, L., (1995) Generalized Heisenberg Groups and DamekRicci Harmonic Spaces 
504 |a Cariglia, M., (2004) Class. Quantum Grav., 21, p. 1051 
504 |a Chiossi, S., Salamon, S., The intrinsic torsion of SU(3) and G 2 structures (2002) Proc. Conf. Diff. Geom., pp. 115-132 
504 |a Floyd, R., (1973) PhD Thesis 
504 |a Penrose, R., (1973) Ann. N. Y. Acad. Sci., 224, p. 125 
504 |a Frolov, V.P., Kubiznak, D., (2007) Phys. Rev. Lett., 98 
504 |a Frolov V P, Krtous P and Kubiznak D 2007 JHEP02(2007)005; Gibbons, G.W., Rietdijk, R.H., Van Holten, J.W., (1993) Nucl. Phys., 404, pp. 42-64 
504 |a Gray, A., The structure of Nearly Khler manifolds (1976) Math. Ann., 223, pp. 233-248 
504 |a Kaplan, A., Riemannian nilmanifolds attached to Clifford modules (1981) Geom. Ded., 11, pp. 127-136 
504 |a Krtous P, Kubiznak D, Page D N and Frolov V F 2007 JHEP02(2007)004; Kubiznak, D., Frolov, V.P., (2007) Class. Quantum Grav., 24, p. 1 
504 |a Mason, L., Taghavi-Chabert, A., KillingYano tensors and multi-Hermitian structures (2010) J. Geom. Phys., 60, pp. 907-923 
504 |a Milnor, J., Curvature of left invariant metrics on Lie groups (1976) Adv. Math., 21, pp. 293-329 
504 |a Moroianu, A., Semmelmann, U., Killing forms on quaternion-Khler manifolds (2005) Ann. Global Anal. Geom., 28, pp. 319-335 
504 |a Page, D.N., Kubiznak, D., Vasudevan, M., Krtous, P., (2007) Phys. Rev. Lett., 98 
504 |a Papadopoulos, G., KillingYano equations and G-structures (2008) Class. Quantum Grav., 25 
504 |a Penrose, R., Walker, M., On quadratic first integrals of the geodesic equation for type {22} space times (1970) Commun. Math. Phys., 18, pp. 265-274 
504 |a Semmelmann, U., Conformal Killing forms on Riemannian Manifolds (2003) Mathematische Zeitschrift, 245 (3), pp. 503-527. , DOI 10.1007/s00209-003-0549-4 
504 |a Wallach, N., Compact homogeneous Riemannian manifolds with strictly positive curvature (1972) Ann. Math., 96, pp. 277-295 
504 |a Yano, K., On harmonic and Killing vector fields (1952) Ann. Math., 55, pp. 38-45 
520 3 |a In this paper we study 2-forms which are solutions of the Killing-Yano equation on Lie groups endowed with a left invariant metric having various curvature properties. We prove a general result for 2-step nilpotent Lie groups and as a corollary we obtain a nondegenerate solution of the Killing-Yano equation on the Iwasawa manifold with its half-flat metric. © 2012 IOP Publishing Ltd.  |l eng 
593 |a FaMAF, Universidad Nacional de Córdoba, Cuidad Universitaria, 5000 Córdoba, Argentina 
593 |a Departamento de Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
700 1 |a Dotti, I.G. 
700 1 |a Santillán, O. 
773 0 |d 2012  |g v. 29  |k n. 6  |p Classical Quantum Gravity  |x 02649381  |w (AR-BaUEN)CENRE-326  |t Classical and Quantum Gravity 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857870005&doi=10.1088%2f0264-9381%2f29%2f6%2f065004&partnerID=40&md5=99e7586bccdcd3cac70db9096523519d  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1088/0264-9381/29/6/065004  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_02649381_v29_n6_p_Barberis  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02649381_v29_n6_p_Barberis  |y Registro en la Biblioteca Digital 
961 |a paper_02649381_v29_n6_p_Barberis  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 70718