The Killing-Yano equation on Lie groups
In this paper we study 2-forms which are solutions of the Killing-Yano equation on Lie groups endowed with a left invariant metric having various curvature properties. We prove a general result for 2-step nilpotent Lie groups and as a corollary we obtain a nondegenerate solution of the Killing-Yano...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2012
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 05072caa a22006137a 4500 | ||
|---|---|---|---|
| 001 | PAPER-9765 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203944.0 | ||
| 008 | 190411s2012 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84857870005 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Barberis, M.L. | |
| 245 | 1 | 4 | |a The Killing-Yano equation on Lie groups |
| 260 | |c 2012 | ||
| 270 | 1 | 0 | |m Barberis, M.L.; FaMAF, Universidad Nacional de Córdoba, Cuidad Universitaria, 5000 Córdoba, Argentina; email: barberis@famaf.unc.edu.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Andrada, A., Barberis, M.L., Dotti, I., Left Invariant Conformal KillingYano Tensors | ||
| 504 | |a De Azcarraga, J.A., Izquierdo, J.M., MacFarlane, A.J., (2001) Nucl. Phys., 604, pp. 75-91 | ||
| 504 | |a Benn, I.M., Charlton, P., Kress, J., Debye potentials for Maxwell and Dirac fields from a generalization of the KillingYano equation (1997) J. Math. Phys., 38, pp. 4504-4527 | ||
| 504 | |a Benn, I.M., Charlton, P., Dirac symmetry operators from conformal KillingYano tensors (1997) Class. Quantum Grav., 14, pp. 1037-1042 | ||
| 504 | |a Belgun, F., Moroianu, A., Semmelmann, U., Killing forms on symmetric spaces (2006) Differential Geometry and its Application, 24 (3), pp. 215-222. , DOI 10.1016/j.difgeo.2005.09.007, PII S0926224505000872 | ||
| 504 | |a Berndt, J., Tricerri, F., Vanhecke, L., (1995) Generalized Heisenberg Groups and DamekRicci Harmonic Spaces | ||
| 504 | |a Cariglia, M., (2004) Class. Quantum Grav., 21, p. 1051 | ||
| 504 | |a Chiossi, S., Salamon, S., The intrinsic torsion of SU(3) and G 2 structures (2002) Proc. Conf. Diff. Geom., pp. 115-132 | ||
| 504 | |a Floyd, R., (1973) PhD Thesis | ||
| 504 | |a Penrose, R., (1973) Ann. N. Y. Acad. Sci., 224, p. 125 | ||
| 504 | |a Frolov, V.P., Kubiznak, D., (2007) Phys. Rev. Lett., 98 | ||
| 504 | |a Frolov V P, Krtous P and Kubiznak D 2007 JHEP02(2007)005; Gibbons, G.W., Rietdijk, R.H., Van Holten, J.W., (1993) Nucl. Phys., 404, pp. 42-64 | ||
| 504 | |a Gray, A., The structure of Nearly Khler manifolds (1976) Math. Ann., 223, pp. 233-248 | ||
| 504 | |a Kaplan, A., Riemannian nilmanifolds attached to Clifford modules (1981) Geom. Ded., 11, pp. 127-136 | ||
| 504 | |a Krtous P, Kubiznak D, Page D N and Frolov V F 2007 JHEP02(2007)004; Kubiznak, D., Frolov, V.P., (2007) Class. Quantum Grav., 24, p. 1 | ||
| 504 | |a Mason, L., Taghavi-Chabert, A., KillingYano tensors and multi-Hermitian structures (2010) J. Geom. Phys., 60, pp. 907-923 | ||
| 504 | |a Milnor, J., Curvature of left invariant metrics on Lie groups (1976) Adv. Math., 21, pp. 293-329 | ||
| 504 | |a Moroianu, A., Semmelmann, U., Killing forms on quaternion-Khler manifolds (2005) Ann. Global Anal. Geom., 28, pp. 319-335 | ||
| 504 | |a Page, D.N., Kubiznak, D., Vasudevan, M., Krtous, P., (2007) Phys. Rev. Lett., 98 | ||
| 504 | |a Papadopoulos, G., KillingYano equations and G-structures (2008) Class. Quantum Grav., 25 | ||
| 504 | |a Penrose, R., Walker, M., On quadratic first integrals of the geodesic equation for type {22} space times (1970) Commun. Math. Phys., 18, pp. 265-274 | ||
| 504 | |a Semmelmann, U., Conformal Killing forms on Riemannian Manifolds (2003) Mathematische Zeitschrift, 245 (3), pp. 503-527. , DOI 10.1007/s00209-003-0549-4 | ||
| 504 | |a Wallach, N., Compact homogeneous Riemannian manifolds with strictly positive curvature (1972) Ann. Math., 96, pp. 277-295 | ||
| 504 | |a Yano, K., On harmonic and Killing vector fields (1952) Ann. Math., 55, pp. 38-45 | ||
| 520 | 3 | |a In this paper we study 2-forms which are solutions of the Killing-Yano equation on Lie groups endowed with a left invariant metric having various curvature properties. We prove a general result for 2-step nilpotent Lie groups and as a corollary we obtain a nondegenerate solution of the Killing-Yano equation on the Iwasawa manifold with its half-flat metric. © 2012 IOP Publishing Ltd. |l eng | |
| 593 | |a FaMAF, Universidad Nacional de Córdoba, Cuidad Universitaria, 5000 Córdoba, Argentina | ||
| 593 | |a Departamento de Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina | ||
| 700 | 1 | |a Dotti, I.G. | |
| 700 | 1 | |a Santillán, O. | |
| 773 | 0 | |d 2012 |g v. 29 |k n. 6 |p Classical Quantum Gravity |x 02649381 |w (AR-BaUEN)CENRE-326 |t Classical and Quantum Gravity | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857870005&doi=10.1088%2f0264-9381%2f29%2f6%2f065004&partnerID=40&md5=99e7586bccdcd3cac70db9096523519d |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1088/0264-9381/29/6/065004 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_02649381_v29_n6_p_Barberis |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02649381_v29_n6_p_Barberis |y Registro en la Biblioteca Digital |
| 961 | |a paper_02649381_v29_n6_p_Barberis |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a VARI | ||
| 999 | |c 70718 | ||