ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells

The capability of silicon nanoparticles to increase the yield of reactive species upon 4 MeV X-ray irradiation of aqueous suspensions and C6 glioma cell cultures was investigated. ROS generation was detected and quantified using several specific probes. The particles were characterized by FTIR, XPS,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gara, P.M.D
Otros Autores: Garabano, N.I, Portoles, M.J.L, Moreno, Mario Sergio Jesús, Dodat, D., Casas, O.R, Gonzalez, M.C, Kotler, M.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16388caa a22018377a 4500
001 PAPER-9866
003 AR-BaUEN
005 20250805113047.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84856782425 
024 7 |2 cas  |a hydrogen peroxide, 7722-84-1; silicon, 7440-21-3; silicon dioxide, 10279-57-9, 14464-46-1, 14808-60-7, 15468-32-3, 60676-86-0, 7631-86-9 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Gara, P.M.D. 
245 1 0 |a ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells 
260 |c 2012 
270 1 0 |m Gonzalez, M.C.; INIFTA, Departamento de Química, Facultad de Ciencias Exactas, CC16 Suc. 4 (1900), La Plata, Argentina; email: gonzalez@inifta.unlp.edu.ar 
504 |a Babich, H., Borenfreund, E., Applications of the neutral red cytotoxicity assay to in vitro toxicology (1990) ATLA, 18, pp. 129-144 
504 |a Bertolini, G., Coche, A., (1968) Semiconductor Detectors, , North Holland Publishing Co., New York 
504 |a Bosio, G.N., David Gara, P.M., Garcia Einschlag, F.S., Gonzalez, M.C., Del Panno, M.T., Photodegradation of soil organic matter and its effect on gram-negative bacterial growth (2008) Photochem Photobiol, 84, pp. 1126-1132 
504 |a Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254 
504 |a Carter, J.D., Cheng, N.N., Qu, Y., Suarez, G.D., Guo, T., Nanoscale energy deposition by X-ray absorbing nanostructures (2007) Journal of Physical Chemistry B, 111 (40), pp. 11622-11625. , DOI 10.1021/jp075253u 
504 |a Chen, M., Von Mikecz, A., Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO 2 nanoparticles (2005) Experimental Cell Research, 305 (1), pp. 51-62. , DOI 10.1016/j.yexcr.2004.12.021 
504 |a Cooney, R.R., Sewall, S.L., Dias, E.A., Sagar, D.M., Anderson, K.E.H., Unified picture of electron and hole relaxation pathways in semiconductor quantum dots (2007) Phys Rev B, 75, p. 245311 
504 |a Dennis, E.J., Dolmaris, G.C., Fucamara, D., Jain, R.K., TIMELINE: Photodynamic therapy for cancer (2003) Nat Rev Cancer, 3, pp. 380-387 
504 |a Erogbogbo, F., Tien, C.A., Chang, C.W., Yong, K.T., Law, W.C., Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells (2011) Bioconjugate Chem, 22, pp. 1081-1088 
504 |a Hackley, V.A., Clogston, J.D., Measuring the size of nanoparticles in aqueous media using batch-mode dynamic light scattering (2007) NIST-NCL Joint Assay Protocol PCC-1, Version 1.0, , http://ncl.cancer.gov/NCL_Method_NIST-NCL_PCC-1.pdf, Accessed 13 July 2011 
504 |a Hall, E.J., Giaccia, A.J., (2006) Radiobiology for the Radiologist, , Lippincott Williams & Wilkins, Philadelphia 
504 |a Hubbell, J.H., Review of photon interaction cross section data in the medical and biological context (1999) Physics in Medicine and Biology, 44 (1), pp. R1-R22. , DOI 10.1088/0031-9155/44/1/001, PII S0031915599742090 
504 |a Hubbell, J.H., Seltzer, S.M., (2010) Tables of X-ray Mass Attenuation Coefficients and Mass Energy-absorption Coefficients from 1 KeV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest, , http://www.nist.gov/pml/data/xraycoef/index.cfm, Ionizing Radiation Division, Physics Laboratory, NIST. Accessed 13 July 2011 
504 |a Isakovic, A., Markovic, Z., Nikolic, N., Todorovic-Markovic, B., Vranjes-Djuric, S., Harhaji, L., Raicevic, N., Trajkovic, V., Inactivation of nanocrystalline C 60 cytotoxicity by gamma-irradiation (2006) Biomaterials, 27 (29), pp. 5049-5058. , DOI 10.1016/j.biomaterials.2006.05.047, PII S0142961206005060 
504 |a Juzenas, P., Chen, W., Sun, Y.-P., Coelho, M.A.N., Generalov, R., Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer (2008) Adv Drug Deliv Rev, 60, pp. 1600-1614 
504 |a Kang, Z., Liu, Y., Lee, S.-T., Small-sized silicon nanoparticles: New nanolights and nanocatalysts (2011) Nanoscale, 3, pp. 777-791 
504 |a Knoll, G.F., (1989) Radiation Detection and Measurement, , Wiley, New York 
504 |a Kohn, T., Nelson, K.L., Sunlight-mediated inactivation of MS2 coliphage via exogenous singlet oxygen produced by sensitizers in natural waters (2007) Environmental Science and Technology, 41 (1), pp. 192-197. , DOI 10.1021/es061716i 
504 |a Kovalev, D., Fujii, M., Silicon nanocrystals: Photosensitizers for oxygen molecules (2005) Advanced Materials, 17 (21), pp. 2531-2544. , DOI 10.1002/adma.200500328 
504 |a Kravets, V.G., Meier, C., Konjhodzic, D., Lorke, A., Wiggers, H., Infrared properties of silicon nanoparticles (2005) Journal of Applied Physics, 97 (8), pp. 1-5. , DOI 10.1063/1.1866475, 084306 
504 |a Lide, D.R., (2009) Handbook of Chemistry and Physics, , CRC Press. Inc., Boca Raton Llansola Portolés MJ, Rodriguez 
504 |a Nieto, F., Soria, D.B., Amalvy, J.I., Peruzzo, P.J., Photophysical properties of blueemitting silicon nanoparticles (2009) J Phys Chem C, 113, pp. 13694-13702 
504 |a Llansola Portolés, M.J., David Gara, P.M., Kotler, M.L., Bertolotti, S., San Roman, E., Silicon nanoparticle photophysics and singlet oxygen generation (2010) Langmuir, 26, pp. 10953-10960 
504 |a Mitrasinovic, P.M., Mihajlovic, M.L., Recent advances in radiation therapy of cancer cells: A step towards an experimental and systems biology framework (2008) Curr Radiopharm, 1, pp. 22-29 
504 |a Orrenius, S., Reactive oxygen species in mitochondria-mediated cell death (2007) Drug Metabolism Reviews, 39 (2-3), pp. 443-455. , DOI 10.1080/03602530701468516, PII 781828662 
504 |a Ouyang, M., Yuan, C., Muisener, R.J., Boulares, A., Koberstein, J.T., Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes (2000) Chem Mater, 12, pp. 1591-1596 
504 |a Ozcan, I., Bouchemal, K., Segura-Sanchez, F., Abac, O., Ozer, O., Guneri, T., Ponchel, G., Effects of sterilization techniques on the PEGylated poly (fÁ -benzyl-L-glutamate) (PBLG) nanoparticles (2009) Acta Pharmaceut Sci, 51, pp. 211-218 
504 |a Park, Y.-S., Liz-Marzan, L.M., Kasuya, A., Kobayashi, Y., Nagao, D., Konno, M., Mamykin, S., Ohuchi, N., X-ray absorption of gold nanoparticles with thin silica shell (2006) Journal of Nanoscience and Nanotechnology, 6 (11), pp. 3503-3506. , DOI 10.1166/jnn.2006.044 
504 |a Park, J.-H., Gu, L., Von Maltzahn, G., Ruoslahti, E., Bhatia, S.N., Biodegradable luminescent porous silicon nanoparticles for in vivo applications (2009) Nat Mater, 8, pp. 331-336 
504 |a Propst, E.K., Kohl, P.A., The electrochemical oxidation of silicon and formation of porous silicon in acetonitrile (1994) J Electrochem Soc, 141, pp. 1006-1013 
504 |a Repetto, G., Del Peso, A., Zurita, J.L., Neutral red uptake assay for the estimation of cell viability/ cytotoxicity (2008) Nat Protoc, 3, pp. 1125-1131 
504 |a Ross, A.B., Mallard, W.G., Helman, W.P., (1998) NDRL-NIST Solution Kinetics Database, , http://kinetics.nist.gov/solution/, Ver. 4.0. Accessed 13 July 2011 
504 |a Ryckman, J.D., Reed, R.A., Weller, R.A., Fleetwood, D.M., Weiss, S.M., Enhanced room temperature oxidation in silicon and porous silicon under 10 keV X-ray irradiation (2010) J Appl Phys, 108, pp. 113528-113534 
504 |a Schärtl, W., (2007) Light Scattering from Polymer Solutions and Nanoparticle Dispersions, , Springer, Berlin 
504 |a Seino, S., Yamamoto, T.A., Hashimoto, K., Okuda, S., Chitose, N., Gamma-ray irradiation effect on aqueous phenol solutions dispersing TiO 2 or Al 2O 3 nanoparticles (2003) Rev Adv Mater Sci, 4, pp. 70-74 
504 |a Soffietti, R., Leoncini, B., Ruda, R., New developments in the treatment of malignant gliomas (2007) Expert Review of Neurotherapeutics, 7 (10), pp. 1313-1326. , http://www.future-drugs.com/doi/pdf/10.1586/14737175.7.10.1313, DOI 10.1586/14737175.7.10.1313 
504 |a St-Pierre, J., Buckingham, J.A., Roebuck, S.J., Brand, M.D., Topology of superoxide production from different sites in the mitochondrial electron transport chain (2002) Journal of Biological Chemistry, 277 (47), pp. 44784-44790. , DOI 10.1074/jbc.M207217200 
504 |a Takahashi, J., Misawa, M., Analysis of potential radiosensitizing materials for X-ray-induced photodynamic therapy (2007) NanoBiotechnology, 3, pp. 116-126 
504 |a Wang, P.W., Bater, S., Zhang, L.P., Ascherl, M., Craig, J.H., XPS investigation of electron beam effects on a trimethylsilane dosed Si(100) surface (1995) Appl Surf Sci, 90, pp. 413-417 
504 |a Wang, L., Yang, W., Read, P., Larner, J., Sheng, K., Tumor cell apoptosis induced by nanoparticle conjugate in combination with radiation therapy (2010) Nanotechnology, 21, pp. 475103-475110 
504 |a Yang, C.S., Oh, K.S., Ryu, J.Y., Kim, D.C., Shou-Yong, J., Choi, C.K., Lee, H.-J., Chang, H.Y., A study on the formation and characteristics of the Si-O-C-H composite thin films with low dielectric constant for advanced semiconductor devices (2001) Thin Solid Films, 390 (1-2), pp. 113-118. , DOI 10.1016/S0040-6090(01)00931-2, PII S0040609001009312 
504 |a Yang, W., Read, P.W., Mi, J.M., Baisden, J.M., Reardon, K.A., Semiconductor nanoparticles as energy mediators for photosensitizer- enhanced radiotherapy (2008) Int J Radiat Oncol, 72, pp. 633-635 
504 |a Yoffe, A.D., Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems (2001) Adv Phys, 50, pp. 1-208 
504 |a Zhang, X.D., Guo, M.L., Wu, H.Y., Sun, Y.M., Ding, Y.Q., Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy (2009) Int J Nanomed, 4, pp. 165-173 
506 |2 openaire  |e Política editorial 
520 3 |a The capability of silicon nanoparticles to increase the yield of reactive species upon 4 MeV X-ray irradiation of aqueous suspensions and C6 glioma cell cultures was investigated. ROS generation was detected and quantified using several specific probes. The particles were characterized by FTIR, XPS, TEM, DLS, luminescence, and adsorption spectroscopy before and after irradiation to evaluate the effect of high energy radiation on their structure. The total concentration of O 2 ·-/HO 2 ·, HO ·, and H 2O 2 generated upon 4-MeV X-ray irradiation of 6.4 μM silicon nanoparticle aqueous suspensions were on the order of 10 μM per Gy, ten times higher than that obtained in similar experiments but in the absence of particles. Cytotoxic 1O 2 was generated only in irradiation experiments containing the particles. The particle surface became oxidized to SiO 2 and the luminescence yield reduced with the irradiation dose. Changes in the surface morphology did not affect, within the experimental error, the yields ofROSgenerated per Gy. X-ray irradiation of glioma C6 cell cultures with incorporated silicon nanoparticles showed a marked production of ROS proportional to the radiation dose received. In the absence of nanoparticles, the cells showed no irradiation- enhanced ROS generation. The obtained results indicate that silicon nanoparticles of <5 nm size have the potential to be used as radiosensitizers for improving the outcomes of cancer radiotherapy. Their capability of producing 1O 2 upon X-ray irradiation opens novel approaches in the design of therapy strategies. © Springer Science+Business Media B.V. 2012.  |l eng 
536 |a Detalles de la financiación: Spectrum Pharmaceuticals 
536 |a Detalles de la financiación: Universidad Nacional de La Plata, UNLP 
536 |a Detalles de la financiación: Comisión Nacional de Energía Atómica, Gobierno de Argentina, CNEA 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET 
536 |a Detalles de la financiación: Acknowledgments This research was supported by the grant PIP 112-200801-00356 from CONICET, Argentina. The authors thank Lic. M. Martinez from the Physical Department at CIO La Plata for his help with the irradiation of the samples, Dr. Aldo Rubbert from INIFTA for the XPS spectrum, B. Soria from CEQUINOR, UNLP for the FTIR spectra, and A. Wolosiuk from CNEA, Bs.As. for the DLS measurements. P.M.D.G. thanks Fundación Avanzar for a postgraduate fellowship. N.I.G. and M.J.L.P. thank CONICET for a studentship. M.C.G. and M.L.K. are research members of CONICET. 
593 |a CITOMA, Fundación Avanzar, Instituto de Terapia Radiante S.A., Calle 60 Nro. 480 (1900), La Plata, Argentina 
593 |a INIFTA, Departamento de Química, Facultad de Ciencias Exactas, CC16 Suc. 4 (1900), La Plata, Argentina 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina 
593 |a Centro Atómico Bariloche, 8400 San Carlos de Bariloche, Argentina 
690 1 0 |a GLIOMA C6 CELLS 
690 1 0 |a RADIOTHERAPY 
690 1 0 |a ROS 
690 1 0 |a SILICON NANOPARTICLES 
690 1 0 |a SINGLET MOLECULAR OXYGEN 
690 1 0 |a X-RAYS 
690 1 0 |a AQUEOUS SUSPENSIONS 
690 1 0 |a C6 CELLS 
690 1 0 |a CYTOTOXIC 
690 1 0 |a EXPERIMENTAL ERRORS 
690 1 0 |a FTIR 
690 1 0 |a HIGH ENERGY RADIATION 
690 1 0 |a IRRADIATION DOSE 
690 1 0 |a IRRADIATION EXPERIMENTS 
690 1 0 |a PARTICLE SURFACE 
690 1 0 |a RADIOSENSITIZERS 
690 1 0 |a REACTIVE SPECIES 
690 1 0 |a ROS 
690 1 0 |a SILICON NANOPARTICLES 
690 1 0 |a SINGLET MOLECULAR OXYGEN 
690 1 0 |a THERAPY STRATEGIES 
690 1 0 |a X RAY IRRADIATION 
690 1 0 |a ADSORPTION 
690 1 0 |a CELL CULTURE 
690 1 0 |a EXPERIMENTS 
690 1 0 |a FOURIER TRANSFORM INFRARED SPECTROSCOPY 
690 1 0 |a IRRADIATION 
690 1 0 |a LUMINESCENCE 
690 1 0 |a NANOPARTICLES 
690 1 0 |a RADIATION 
690 1 0 |a RADIOTHERAPY 
690 1 0 |a SILICON OXIDES 
690 1 0 |a TUMORS 
690 1 0 |a X RAYS 
690 1 0 |a SUSPENSIONS (FLUIDS) 
690 1 0 |a HYDROGEN PEROXIDE 
690 1 0 |a NANOPARTICLE 
690 1 0 |a RADIOSENSITIZING AGENT 
690 1 0 |a REACTIVE OXYGEN METABOLITE 
690 1 0 |a SCAVENGER 
690 1 0 |a SILICON 
690 1 0 |a SILICON DIOXIDE 
690 1 0 |a SILICON NANOPARTICLE 
690 1 0 |a SINGLET OXYGEN 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ADSORPTION SPECTROSCOPY 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ARTICLE 
690 1 0 |a CANCER RADIOTHERAPY 
690 1 0 |a CELL SUSPENSION 
690 1 0 |a CHEMICAL STRUCTURE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a CYTOTOXICITY 
690 1 0 |a GLIOMA CELL 
690 1 0 |a INFRARED SPECTROSCOPY 
690 1 0 |a IONIZING RADIATION 
690 1 0 |a LIGHT SCATTERING 
690 1 0 |a LUMINESCENCE 
690 1 0 |a NONHUMAN 
690 1 0 |a PARTICLE SIZE 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a RADIATION DOSE 
690 1 0 |a RADIATION RESPONSE 
690 1 0 |a RAT 
690 1 0 |a SPECTROSCOPY 
690 1 0 |a SURFACE PROPERTY 
690 1 0 |a TRANSMISSION ELECTRON MICROSCOPY 
690 1 0 |a TUMOR CELL CULTURE 
690 1 0 |a X RAY 
690 1 0 |a X RAY PHOTOELECTRON SPECTROSCOPY 
700 1 |a Garabano, N.I. 
700 1 |a Portoles, M.J.L. 
700 1 |a Moreno, Mario Sergio Jesús 
700 1 |a Dodat, D. 
700 1 |a Casas, O.R. 
700 1 |a Gonzalez, M.C. 
700 1 |a Kotler, M.L. 
773 0 |d 2012  |g v. 14  |k n. 3  |p J. Nanopart. Res.  |x 13880764  |t Journal of Nanoparticle Research 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856782425&doi=10.1007%2fs11051-012-0741-8&partnerID=40&md5=9f8169e46b46007bea2feb6fe3e2410f  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11051-012-0741-8  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_13880764_v14_n3_p_Gara  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13880764_v14_n3_p_Gara  |y Registro en la Biblioteca Digital 
961 |a paper_13880764_v14_n3_p_Gara  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 70819