|
|
|
|
| LEADER |
01479nam a22003255a 4500 |
| 001 |
21220 |
| 003 |
AR-SrUBC |
| 005 |
20210617145502.0 |
| 007 |
t||||||||||||| |
| 008 |
000000m||||||||nyua||||r|||||||||||spa|| |
| 020 |
|
|
|a 0387942580
|
| 040 |
|
|
|a AR-SrUBC
|b spa
|e rcaa2
|
| 080 |
|
|
|a 510.6
|2 1995 ES
|
| 100 |
1 |
|
|a Ebbinghaus, Heinz-Dieter,
|d 1939-.
|9 40972
|
| 245 |
1 |
0 |
|a Mathematical logic.
|c H.D. Ebbinghaus, J. Flum, W. Thomas.
|
| 250 |
|
|
|a 2nd ed
|
| 260 |
|
|
|a New York :
|b Springer,
|c 1994.
|
| 300 |
|
|
|a x, 289 p. :
|b il. ;
|c 24 cm.
|
| 336 |
|
|
|a texto
|2 rdacontent
|
| 337 |
|
|
|a sin mediación
|2 rdamedia
|
| 338 |
|
|
|a volumen
|2 rdacarrier
|
| 490 |
|
0 |
|a Undergraduate texts in mathematics
|
| 505 |
0 |
0 |
|a Contenido: Introduction. Syntax of first-order languages. Semantics of first-order languages. A sequent calculus. The completeness theorem. The Löwenheim-Skolem and the compactness theorem. The scope of first-order logic. Syntactic interpretations and normal forms. Extensions of first-order logic. Limitation of the formal method. Free models and logic programming. An algebraic characterization of elementary equivalence. Lindström's first and second theorem.
|
| 534 |
|
|
|t Einführung in die matematische logik
|
| 650 |
|
7 |
|a LOGICA SIMBOLICA
|2 lemb2
|9 10609
|
| 650 |
|
7 |
|a LOGICA MATEMATICA
|2 lemb2
|9 40973
|
| 700 |
1 |
|
|a Flum, J.
|9 40974
|
| 700 |
1 |
|
|a Thomas, W.
|9 40975
|
| 942 |
|
|
|2 cdu
|b 2019-01-01
|c BK
|d 022437
|h 510.6
|i EBBm2
|z MI
|6 5106_EBBM2
|
| 999 |
|
|
|c 21220
|d 21220
|