A practical guide to splines.

Detalles Bibliográficos
Autor principal: de Boor, Carl
Formato: Libro
Lenguaje:Inglés
Publicado: New York : Springer-Verlag, c1978.
Colección:Applied mathematical sciences 27
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 01799nam a22002775a 4500
001 37894
003 AR-SrUBC
005 20210617185434.0
007 t|||||||||||||
008 150811t||||||||nyu#||||r|||||||||||eng||
020 |a 0387903569 
020 |a 9780387903569 
040 |a AR-SrUBC  |b eng  |e rcaa2 
080 |a 517.925=20  |2 2000 ES 
100 1 |a de Boor, Carl.   |9 77254 
245 1 2 |a A practical guide to splines.   |c Carl de Boor. 
260 |a New York :   |b Springer-Verlag,   |c c1978. 
300 |a xxiv, 392 p. ;   |c 24 cm. 
336 |a texto  |2 rdacontent 
337 |a sin mediación  |2 rdamedia 
338 |a volumen  |2 rdacarrier 
490 0 |a Applied mathematical sciences  |v 27 
505 0 0 |a Contenido: Polynomial interpolation. Limitations of polymonial approximation. Piecewise linear approximation. Piecewise cubic interpolation, CUBSPL. Best approximation properties of complete cubic spline interpolation and its error. Parabolic spline interpolation. A representation for piecewise polynomial functions, PPVALU, INTERV. The spaces IP and the truncated power basis. The representation of PP functions by B-splines. The stable evaluation of B-splines ans splines, BSPLVB, BVALUE, BSPLPP. The B-splines series. Local spline approximation methods and the distance from splines, NEWNOT. Spline interpolation, SPLINT, SPLOPT. Smoothing and least-squares approximation, SMOOTH, L2APPR. The numerical solution of an ordinary differential equation by collocation, BSPLVD, COLLOC. Taut splines, periodic splines, cardinal splines and the approximation of curves, TAUTSP. Surface approximation by tensor products. Appendix. Listing of SOLVEBLOK package.  
650 7 |a ECUACIONES DIFERENCIALES  |2 lemb3  |9 2244 
942 |2 cdu  |b 2015-08-11  |c BK  |d 041512  |h 517.925=20  |i DEBp  |z NO  |6 51792520_DEBP 
999 |c 37894  |d 37894