|
|
|
|
| LEADER |
01414nam a22002655a 4500 |
| 001 |
37899 |
| 003 |
AR-SrUBC |
| 005 |
20210617185434.0 |
| 007 |
t||||||||||||| |
| 008 |
150811m|||||||||||#||||r|||||||||||eng|| |
| 020 |
|
|
|a 0898712742
|
| 040 |
|
|
|a AR-SrUBC
|b eng
|e rcaa2
|
| 080 |
|
|
|a 517.443=20
|2 2000 Abr ES
|
| 100 |
1 |
|
|a Daubechies, Ingrid.
|9 77264
|
| 245 |
1 |
0 |
|a Ten lectures on wavelets.
|c Ingrid Daubechies.
|
| 260 |
|
|
|a Philadelphia, Pa. :
|b Society for Industrial and Applied Mathematics,
|c 1992.
|
| 300 |
|
|
|a xix, 357 p. ;
|c 26 cm.
|
| 336 |
|
|
|a texto
|2 rdacontent
|
| 337 |
|
|
|a sin mediación
|2 rdamedia
|
| 338 |
|
|
|a volumen
|2 rdacarrier
|
| 490 |
|
0 |
|a CBMS-NSF Regional Conference Series in Applied Mathematics
|v 61
|
| 505 |
0 |
0 |
|a Contenido: Introduction -- The what, why, and how of wavelets. The continuous wavelet transform. Discrete wavelet transforms: Frames. Time-frequency density and orthonormal bases. Orthonormal bases of wavelets and multiresolutional analysis. Orthonormal bases of compactly supported wavelets. More about the regularity of compactly supported wavelets. Symmetry for compactly supported wavelet bases. Characterization of functional spaces by means of wavelets. Generalizations and tricks for orthonormal wavelet bases.
|
| 650 |
|
7 |
|a TRANSFORMACIONES (MATEMATICAS)
|2 lemb3
|9 67207
|
| 942 |
|
|
|2 cdu
|b 2015-08-11
|c BK
|d 041517
|h 517.443=20
|i DAUt
|z NO
|6 51744320_DAUT
|
| 999 |
|
|
|c 37899
|d 37899
|