Remote sensing techniques to identify and characterize forage communities in a livestock system in the hyper-arid desert of San Juan (Argentina)

Background and aims: The natural grasslands of arid zones cover 40% of the earth's surface and are a valuable source of forage for livestock. Inappropriate management and high livestock loads are among the factors responsible for their degradation. In this sense, a fast evaluation is essential...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tapia, Raúl E., Carmona Crocco, Julieta, Martinelli, Mariana
Formato: Artículo revista
Lenguaje:Español
Publicado: Sociedad Argentina de Botánica 2020
Materias:
Acceso en línea:https://revistas.unc.edu.ar/index.php/BSAB/article/view/29322
Aporte de:
id I10-R325-article-29322
record_format ojs
institution Universidad Nacional de Córdoba
institution_str I-10
repository_str R-325
container_title_str Boletín de la Sociedad Argentina de Botánica
language Español
format Artículo revista
topic vegetation cover
natural grassland
remote sensing
drylands
cobertura vegetal
pastizal natural
zonas áridas
spellingShingle vegetation cover
natural grassland
remote sensing
drylands
cobertura vegetal
pastizal natural
zonas áridas
Tapia, Raúl E.
Carmona Crocco, Julieta
Martinelli, Mariana
Remote sensing techniques to identify and characterize forage communities in a livestock system in the hyper-arid desert of San Juan (Argentina)
topic_facet vegetation cover
natural grassland
remote sensing
drylands
cobertura vegetal
pastizal natural
zonas áridas
author Tapia, Raúl E.
Carmona Crocco, Julieta
Martinelli, Mariana
author_facet Tapia, Raúl E.
Carmona Crocco, Julieta
Martinelli, Mariana
author_sort Tapia, Raúl E.
title Remote sensing techniques to identify and characterize forage communities in a livestock system in the hyper-arid desert of San Juan (Argentina)
title_short Remote sensing techniques to identify and characterize forage communities in a livestock system in the hyper-arid desert of San Juan (Argentina)
title_full Remote sensing techniques to identify and characterize forage communities in a livestock system in the hyper-arid desert of San Juan (Argentina)
title_fullStr Remote sensing techniques to identify and characterize forage communities in a livestock system in the hyper-arid desert of San Juan (Argentina)
title_full_unstemmed Remote sensing techniques to identify and characterize forage communities in a livestock system in the hyper-arid desert of San Juan (Argentina)
title_sort remote sensing techniques to identify and characterize forage communities in a livestock system in the hyper-arid desert of san juan (argentina)
description Background and aims: The natural grasslands of arid zones cover 40% of the earth's surface and are a valuable source of forage for livestock. Inappropriate management and high livestock loads are among the factors responsible for their degradation. In this sense, a fast evaluation is essential to correct its use and promote conservation. The objective of the study was to identify and characterize, through satellite image processing and fieldwork, forage plant communities in a rainfed livestock system of San Juan. M&M: Indicator variables of soil and vegetation were generated from a Landsat 8 OLI image. Subsequently, unsupervised kmeans classification was performed. On field, plant cover, mulch and percentage of bare soil were registered from linear transects. Finally, the livestock receptivity of the plant communities was estimated. Results: 3 types of coverage were identified: coverage higher than 50%; higher than 20% and less than 50% and less than 20%. Also, two forage communities were identified, Lamaral and Zampal. In Lamaral, Prosopis alpataco var lamaro obtained a coverage of 48%, a receptivity of 2.21 hectare/goat equivalent. In Zampal, a 35% coverage of Atriplex undulata was registered and the receptivity was 1.80 hectare/goat equivalent. Conclusions: The digital processing carried out was adequate for the purpose of the study and allowed recognizing, characterizing and mapping two forage communities. The richness of the species was low, with a predominance of shrubs and woody plants, limiting livestock in the area.
publisher Sociedad Argentina de Botánica
publishDate 2020
url https://revistas.unc.edu.ar/index.php/BSAB/article/view/29322
work_keys_str_mv AT tapiaraule remotesensingtechniquestoidentifyandcharacterizeforagecommunitiesinalivestocksysteminthehyperariddesertofsanjuanargentina
AT carmonacroccojulieta remotesensingtechniquestoidentifyandcharacterizeforagecommunitiesinalivestocksysteminthehyperariddesertofsanjuanargentina
AT martinellimariana remotesensingtechniquestoidentifyandcharacterizeforagecommunitiesinalivestocksysteminthehyperariddesertofsanjuanargentina
AT tapiaraule tecnicasdepercepcionremotaparaidentificarycaracterizarcomunidadesforrajerasenunsistemaganaderodeldesiertohiperaridodesanjuanargentina
AT carmonacroccojulieta tecnicasdepercepcionremotaparaidentificarycaracterizarcomunidadesforrajerasenunsistemaganaderodeldesiertohiperaridodesanjuanargentina
AT martinellimariana tecnicasdepercepcionremotaparaidentificarycaracterizarcomunidadesforrajerasenunsistemaganaderodeldesiertohiperaridodesanjuanargentina
first_indexed 2024-09-03T22:49:58Z
last_indexed 2024-09-03T22:49:58Z
_version_ 1809217013171617792
spelling I10-R325-article-293222021-02-18T22:39:31Z Remote sensing techniques to identify and characterize forage communities in a livestock system in the hyper-arid desert of San Juan (Argentina) Técnicas de percepción remota para identificar y caracterizar comunidades forrajeras en un sistema ganadero del desierto híperárido de San Juan (Argentina) Tapia, Raúl E. Carmona Crocco, Julieta Martinelli, Mariana vegetation cover natural grassland remote sensing drylands cobertura vegetal pastizal natural zonas áridas Background and aims: The natural grasslands of arid zones cover 40% of the earth's surface and are a valuable source of forage for livestock. Inappropriate management and high livestock loads are among the factors responsible for their degradation. In this sense, a fast evaluation is essential to correct its use and promote conservation. The objective of the study was to identify and characterize, through satellite image processing and fieldwork, forage plant communities in a rainfed livestock system of San Juan. M&M: Indicator variables of soil and vegetation were generated from a Landsat 8 OLI image. Subsequently, unsupervised kmeans classification was performed. On field, plant cover, mulch and percentage of bare soil were registered from linear transects. Finally, the livestock receptivity of the plant communities was estimated. Results: 3 types of coverage were identified: coverage higher than 50%; higher than 20% and less than 50% and less than 20%. Also, two forage communities were identified, Lamaral and Zampal. In Lamaral, Prosopis alpataco var lamaro obtained a coverage of 48%, a receptivity of 2.21 hectare/goat equivalent. In Zampal, a 35% coverage of Atriplex undulata was registered and the receptivity was 1.80 hectare/goat equivalent. Conclusions: The digital processing carried out was adequate for the purpose of the study and allowed recognizing, characterizing and mapping two forage communities. The richness of the species was low, with a predominance of shrubs and woody plants, limiting livestock in the area. Introducción y Objetivos: Los pastizales naturales de zonas áridas cubren el 40% de la superficie terrestre y son una valiosa fuente de forraje para el ganado. El manejo inapropiado y las altas cargas ganaderas figuran entre factores responsables de su degradación.  En ese sentido una rápida evaluación es fundamental para corregir su uso y promover la conservación. El objetivo del estudio fue identificar y caracterizar, mediante el procesamiento de imágenes satelitales y trabajo de campo, comunidades forrajeras en un sistema ganadero del secano de San Juan. M&M: A partir de una imagen Landsat 8 OLI se generaron variables indicadoras de suelo y vegetación. Posteriormente se realizó la clasificación no supervisada kmeans. En campo se registró, a partir de transectas lineales, cobertura vegetal, de mantillo y porcentaje de suelo desnudo. Finalmente se estimó la receptividad ganadera de las comunidades forrajeras. Resultados: Se identificaron 3 clases de coberturas: cobertura superior al 50%; superior al 20 % e inferior al 50 % e inferior al 20 % y dos comunidades forrajeras, Lamaral y Zampal. En Lamaral, Prosopis alpataco var. lamaro obtuvo un 35% cobertura y una receptividad de 2.21 hectárea/Equivalente cabra. En Zampal, se registró un 42 % de cobertura de Atriplex undulata y la receptividad fue de1.80 hectárea/Equivalente cabra. Conclusiones: El procesamiento digital realizado fue adecuado para el objetivo del estudio y permitió reconocer, caracterizar y mapear dos comunidades forrajeras. La riqueza de especies fue baja existiendo un predominio de plantas arbustivas y leñosas, esto limita la ganadería de la zona. Sociedad Argentina de Botánica 2020-12-05 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf text/html https://revistas.unc.edu.ar/index.php/BSAB/article/view/29322 10.31055/1851.2372.v55.n4.29322 Boletín de la Sociedad Argentina de Botánica (Journal of the Argentine Botanical Society; Vol. 55 No. 4 (2020): December; 619-630 Boletín de la Sociedad Argentina de Botánica; Vol. 55 Núm. 4 (2020): Diciembre; 619-630 Boletín de la Sociedad Argentina de Botánica; v. 55 n. 4 (2020): Diciembre; 619-630 1851-2372 0373-580X 10.31055/1851.2372.v55.n4 spa https://revistas.unc.edu.ar/index.php/BSAB/article/view/29322/31824 https://revistas.unc.edu.ar/index.php/BSAB/article/view/29322/31825 Derechos de autor 2020 Raúl E. Tapia, Julieta Carmona Crocco, Mariana Martinelli https://creativecommons.org/licenses/by-nc-nd/4.0