Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion‑Tagged Social Media Comments in Spanish

Tagged language resources are an essential requirement for developing machine-learning text-based classifiers. However, manual tagging is extremely time consuming and the resulting datasets are rather small, containing only a few thousand samples. Basic emotion datasets are particularly difficult to...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tessore, Juan Pablo, Esnaola, Leonardo Martín, Lanzarini, Laura, Baldassarri, Sandra
Otros Autores: 0000-0002-2111-0976
Formato: Artículo acceptedVersion
Lenguaje:Inglés
Publicado: Springer Science+Business Media LLC 2021
Materias:
Acceso en línea:https://repositorio.unnoba.edu.ar/xmlui/handle/23601/142
Aporte de:
id I103-R405-23601-142
record_format dspace
institution Universidad Nacional del Noroeste de la Provincia de Buenos Aires
institution_str I-103
repository_str R-405
collection Re DI Repositorio Digital UNNOBA
language Inglés
topic Sentiment analysis
Dataset construction
Dataset validation
Facebook
Text mining
spellingShingle Sentiment analysis
Dataset construction
Dataset validation
Facebook
Text mining
Tessore, Juan Pablo
Esnaola, Leonardo Martín
Lanzarini, Laura
Baldassarri, Sandra
Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion‑Tagged Social Media Comments in Spanish
topic_facet Sentiment analysis
Dataset construction
Dataset validation
Facebook
Text mining
description Tagged language resources are an essential requirement for developing machine-learning text-based classifiers. However, manual tagging is extremely time consuming and the resulting datasets are rather small, containing only a few thousand samples. Basic emotion datasets are particularly difficult to classify manually because categorization is prone to subjectivity, and thus, redundant classification is required to validate the assigned tag. Even though, in recent years, the amount of emotion-tagged text datasets in Spanish has been growing, it cannot be compared with the number, size, and quality of the datasets in English. Quality is a particularly concerning issue, as not many datasets in Spanish included a validation step in the construction process. In this article, a dataset of social media comments in Spanish is compiled, selected, filtered, and presented. A sample of the dataset is reclassified by a group of psychologists and validated using the Fleiss Kappa interrater agreement measure. Error analysis is performed by using the Sentic Computing tool BabelSenticNet. Results indicate that the agreement between the human raters and the automatically acquired tag is moderate, similar to other manually tagged datasets, with the advantages that the presented dataset contains several hundreds of thousands of tagged comments and it does not require extensive manual tagging. The agreement measured between human raters is very similar to the one between human raters and the original tag. Every measure presented is in the moderate agreement zone and, as such, suitable for training classification algorithms in sentiment analysis field.
author2 0000-0002-2111-0976
author_facet 0000-0002-2111-0976
Tessore, Juan Pablo
Esnaola, Leonardo Martín
Lanzarini, Laura
Baldassarri, Sandra
format Artículo
Artículo
acceptedVersion
Artículo
Artículo
acceptedVersion
Artículo
Artículo
acceptedVersion
author Tessore, Juan Pablo
Esnaola, Leonardo Martín
Lanzarini, Laura
Baldassarri, Sandra
author_sort Tessore, Juan Pablo
title Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion‑Tagged Social Media Comments in Spanish
title_short Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion‑Tagged Social Media Comments in Spanish
title_full Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion‑Tagged Social Media Comments in Spanish
title_fullStr Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion‑Tagged Social Media Comments in Spanish
title_full_unstemmed Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion‑Tagged Social Media Comments in Spanish
title_sort distant supervised construction and evaluation of a novel dataset of emotion‑tagged social media comments in spanish
publisher Springer Science+Business Media LLC
publishDate 2021
url https://repositorio.unnoba.edu.ar/xmlui/handle/23601/142
work_keys_str_mv AT tessorejuanpablo distantsupervisedconstructionandevaluationofanoveldatasetofemotiontaggedsocialmediacommentsinspanish
AT esnaolaleonardomartin distantsupervisedconstructionandevaluationofanoveldatasetofemotiontaggedsocialmediacommentsinspanish
AT lanzarinilaura distantsupervisedconstructionandevaluationofanoveldatasetofemotiontaggedsocialmediacommentsinspanish
AT baldassarrisandra distantsupervisedconstructionandevaluationofanoveldatasetofemotiontaggedsocialmediacommentsinspanish
_version_ 1850060716846874624
spelling I103-R405-23601-1422021-07-26T14:44:03Z Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion‑Tagged Social Media Comments in Spanish Tessore, Juan Pablo Esnaola, Leonardo Martín Lanzarini, Laura Baldassarri, Sandra 0000-0002-2111-0976 0000-0001-6298-9019 0000-0001-7027-7564 0000-0002-9315-6391 Sentiment analysis Dataset construction Dataset validation Facebook Text mining Tagged language resources are an essential requirement for developing machine-learning text-based classifiers. However, manual tagging is extremely time consuming and the resulting datasets are rather small, containing only a few thousand samples. Basic emotion datasets are particularly difficult to classify manually because categorization is prone to subjectivity, and thus, redundant classification is required to validate the assigned tag. Even though, in recent years, the amount of emotion-tagged text datasets in Spanish has been growing, it cannot be compared with the number, size, and quality of the datasets in English. Quality is a particularly concerning issue, as not many datasets in Spanish included a validation step in the construction process. In this article, a dataset of social media comments in Spanish is compiled, selected, filtered, and presented. A sample of the dataset is reclassified by a group of psychologists and validated using the Fleiss Kappa interrater agreement measure. Error analysis is performed by using the Sentic Computing tool BabelSenticNet. Results indicate that the agreement between the human raters and the automatically acquired tag is moderate, similar to other manually tagged datasets, with the advantages that the presented dataset contains several hundreds of thousands of tagged comments and it does not require extensive manual tagging. The agreement measured between human raters is very similar to the one between human raters and the original tag. Every measure presented is in the moderate agreement zone and, as such, suitable for training classification algorithms in sentiment analysis field. Fil: Tessore, Juan Pablo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Escuela de Tecnología. Instituto de Investigación y Transferencia en Tecnología, Centro Asociado CIC; Argentina. Fil: Tessore, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina Fil: Esnaola, Leonardo Martín. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Escuela de Tecnología. Instituto de Investigación y Transferencia en Tecnología, Centro Asociado CIC; Argentina Fil: Lanzarini, Laura. Facultad de Informática, Instituto de Investigación en Informática LIDI (Centro CICPBA), Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina Fil: Baldassarri, Sandra. Departamento de Informática e Ingeniería de Sistemas, Universidad de Zaragoza, Aragon, Zaragoza, España Fil: Baldassarri, Sandra. Instituto de Investigación en Ingeniería (I3A), Universidad de Zaragoza, Zaragoza, Aragon, España Con referato 2021-07-26T14:44:02Z info:eu-repo/date/embargoEnd/2022-01-17 2021-07-26T14:44:02Z 2021-01-18 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/acceptedVersion info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/acceptedVersion info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/acceptedVersion Tessore, J.P., Esnaola, L.M., Lanzarini, L. et al. Distant Supervised Construction and Evaluation of a Novel Dataset of Emotion-Tagged Social Media Comments in Spanish. Cogn Comput (2021). https://doi.org/10.1007/s12559-020-09800-x 1866-9964 1866-9956 https://repositorio.unnoba.edu.ar/xmlui/handle/23601/142 eng info:eu-repo/grantAgreement/UNNOBA/SIB2017/EXP 195/2017/AR. Buenos Aires/Tecnología y Aplicaciones de Sistemas de Software: Calidad e Innovación en procesos, productos y servicios https://link.springer.com/article/10.1007/s12559-020-09800-x info:eu-repo/semantics/embargoedAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ application/pdf application/pdf text/plain Springer Science+Business Media LLC Cognitive Computation