Entropic Analysis of the Quantum Oscillator with a Minimal Length

The well-known Heisenberg–Robertson uncertainty relation for a pair of noncommuting observables, is expressed in terms of the product of variances and the commutator among the operators, computed for the quantum state of a system. Different modified commutation relations have been considered in the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Puertas Centeno, D., Portesi, Mariela Adelina
Formato: Articulo
Lenguaje:Inglés
Publicado: 2019
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/124032
Aporte de:
id I19-R120-10915-124032
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Exactas
Física
Uncertainty relations
Information entropy
Quantum gravity
spellingShingle Ciencias Exactas
Física
Uncertainty relations
Information entropy
Quantum gravity
Puertas Centeno, D.
Portesi, Mariela Adelina
Entropic Analysis of the Quantum Oscillator with a Minimal Length
topic_facet Ciencias Exactas
Física
Uncertainty relations
Information entropy
Quantum gravity
description The well-known Heisenberg–Robertson uncertainty relation for a pair of noncommuting observables, is expressed in terms of the product of variances and the commutator among the operators, computed for the quantum state of a system. Different modified commutation relations have been considered in the last years with the purpose of taking into account the effect of quantum gravity. Indeed it can be seen that letting [X,P] = iℏ (1 + βP<sup>2</sup>) implies the existence of a minimal length proportional to β . The Bialynicki-Birula–Mycielski entropic uncertainty relation in terms of Shannon entropies is also seen to be deformed in the presence of a minimal length, corresponding to a strictly positive deformation parameter β . Generalized entropies can be implemented. Indeed, results for the sum of position and (auxiliary) momentum Renyi entropies with conjugated indices have been provided recently for the ground and first excited state. We present numerical findings for conjugated pairs of entropic indices, for the lowest lying levels of the deformed harmonic oscillator system in 1D, taking into account the position distribution for the wavefunction and the actual momentum.
format Articulo
Articulo
author Puertas Centeno, D.
Portesi, Mariela Adelina
author_facet Puertas Centeno, D.
Portesi, Mariela Adelina
author_sort Puertas Centeno, D.
title Entropic Analysis of the Quantum Oscillator with a Minimal Length
title_short Entropic Analysis of the Quantum Oscillator with a Minimal Length
title_full Entropic Analysis of the Quantum Oscillator with a Minimal Length
title_fullStr Entropic Analysis of the Quantum Oscillator with a Minimal Length
title_full_unstemmed Entropic Analysis of the Quantum Oscillator with a Minimal Length
title_sort entropic analysis of the quantum oscillator with a minimal length
publishDate 2019
url http://sedici.unlp.edu.ar/handle/10915/124032
work_keys_str_mv AT puertascentenod entropicanalysisofthequantumoscillatorwithaminimallength
AT portesimarielaadelina entropicanalysisofthequantumoscillatorwithaminimallength
bdutipo_str Repositorios
_version_ 1764820450700951553