Unstable fields in Kerr spacetimes

We show that both the interior region r < M − √M² − a² of a Kerr black hole and the a² > M² Kerr naked singularity admit unstable solutions of the Teukolsky equation for any value of the spin weight. For every harmonic number, there is at least one axially symmetric mode that grows exponential...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dotti, Gustavo, Gleiser, Reinaldo J., Ranea Sandoval, Ignacio Francisco
Formato: Articulo
Lenguaje:Inglés
Publicado: 2012
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/132154
Aporte de:
id I19-R120-10915-132154
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Astronomía
Gravity in more than four dimensions, Kaluza-Klein theory, unified field theories; alternative theories of gravity
Classical general relativity
Physics of black holes
Gravitational waves
spellingShingle Astronomía
Gravity in more than four dimensions, Kaluza-Klein theory, unified field theories; alternative theories of gravity
Classical general relativity
Physics of black holes
Gravitational waves
Dotti, Gustavo
Gleiser, Reinaldo J.
Ranea Sandoval, Ignacio Francisco
Unstable fields in Kerr spacetimes
topic_facet Astronomía
Gravity in more than four dimensions, Kaluza-Klein theory, unified field theories; alternative theories of gravity
Classical general relativity
Physics of black holes
Gravitational waves
description We show that both the interior region r < M − √M² − a² of a Kerr black hole and the a² > M² Kerr naked singularity admit unstable solutions of the Teukolsky equation for any value of the spin weight. For every harmonic number, there is at least one axially symmetric mode that grows exponentially in time and decays properly in the radial directions. These can be used as Debye potentials to generate solutions for the scalar, Weyl spinor, Maxwell and linearized gravity field equations on these backgrounds, satisfying appropriate spatial boundary conditions and growing exponentially in time, as shown in detail for the Maxwell case. It is suggested that the existence of the unstable modes is related to the so-called time machine region, where the axial Killing vector field is timelike, and the Teukolsky equation, restricted to axially symmetric fields, changes its character from hyperbolic to elliptic.
format Articulo
Articulo
author Dotti, Gustavo
Gleiser, Reinaldo J.
Ranea Sandoval, Ignacio Francisco
author_facet Dotti, Gustavo
Gleiser, Reinaldo J.
Ranea Sandoval, Ignacio Francisco
author_sort Dotti, Gustavo
title Unstable fields in Kerr spacetimes
title_short Unstable fields in Kerr spacetimes
title_full Unstable fields in Kerr spacetimes
title_fullStr Unstable fields in Kerr spacetimes
title_full_unstemmed Unstable fields in Kerr spacetimes
title_sort unstable fields in kerr spacetimes
publishDate 2012
url http://sedici.unlp.edu.ar/handle/10915/132154
work_keys_str_mv AT dottigustavo unstablefieldsinkerrspacetimes
AT gleiserreinaldoj unstablefieldsinkerrspacetimes
AT raneasandovalignaciofrancisco unstablefieldsinkerrspacetimes
bdutipo_str Repositorios
_version_ 1764820455980531712