Neutron stars in Scalar-Tensor-Vector Gravity

Scalar-Tensor-Vector Gravity (STVG), also referred as Modified Gravity (MOG), is an alternative theory of the gravitational interaction. Its weak field approximation has been successfully used to describe Solar System observations, galaxy rotation curves, dynamics of clusters of galaxies, and cosmol...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: López Armengol, Federico Gastón, Romero, Gustavo Esteban
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2017
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/132508
Aporte de:
id I19-R120-10915-132508
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Astronomía
Modified Gravity
Vector Gravity
Neutron Stars
spellingShingle Astronomía
Modified Gravity
Vector Gravity
Neutron Stars
López Armengol, Federico Gastón
Romero, Gustavo Esteban
Neutron stars in Scalar-Tensor-Vector Gravity
topic_facet Astronomía
Modified Gravity
Vector Gravity
Neutron Stars
description Scalar-Tensor-Vector Gravity (STVG), also referred as Modified Gravity (MOG), is an alternative theory of the gravitational interaction. Its weak field approximation has been successfully used to describe Solar System observations, galaxy rotation curves, dynamics of clusters of galaxies, and cosmological data, without the imposition of dark components. The theory was formulated by John Moffat in 2006. In this work, we derive matter-sourced solutions of STVG and construct neutron star models. We aim at exploring STVG predictions about stellar structure in the strong gravity regime. Specifically, we represent spacetime with a static, spherically symmetric manifold, and model the stellar matter content with a perfect fluid energy-momentum tensor. We then derive the modified Tolman–Oppenheimer–Volkoff equation in STVG and integrate it for different equations of state. We find that STVG allows heavier neutron stars than General Relativity (GR). Maximum masses depend on a normalized parameter that quantifies the deviation from GR. The theory exhibits unusual predictions for extreme values of this parameter. We conclude that STVG admits suitable spherically symmetric solutions with matter sources, relevant for stellar structure. Since recent determinations of neutron stars masses violate some GR predictions, STVG appears as a viable candidate for a new gravity theory.
format Articulo
Preprint
author López Armengol, Federico Gastón
Romero, Gustavo Esteban
author_facet López Armengol, Federico Gastón
Romero, Gustavo Esteban
author_sort López Armengol, Federico Gastón
title Neutron stars in Scalar-Tensor-Vector Gravity
title_short Neutron stars in Scalar-Tensor-Vector Gravity
title_full Neutron stars in Scalar-Tensor-Vector Gravity
title_fullStr Neutron stars in Scalar-Tensor-Vector Gravity
title_full_unstemmed Neutron stars in Scalar-Tensor-Vector Gravity
title_sort neutron stars in scalar-tensor-vector gravity
publishDate 2017
url http://sedici.unlp.edu.ar/handle/10915/132508
work_keys_str_mv AT lopezarmengolfedericogaston neutronstarsinscalartensorvectorgravity
AT romerogustavoesteban neutronstarsinscalartensorvectorgravity
bdutipo_str Repositorios
_version_ 1764820454031228928