Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems

The use of multiresolution techniques and wavelets has become increa-singly popular in the development of numerical schemes for the solution of differential equations. Wavelet’s properties make them useful for developing hierarchical solutions to many engineering problems. They are well localized, o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Calderón, Lucila Daniela, Martín, María Teresa, Vampa, Victoria Cristina, Muszkats, Juan Pablo, Seminara, Silvia Alejandra, Troparevsky, María Inés
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: Springer 2020
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/134801
Aporte de:
id I19-R120-10915-134801
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ingeniería
Matemática
differential equations
oscillatory functions
Wavelet-Galerkin method
spellingShingle Ingeniería
Matemática
differential equations
oscillatory functions
Wavelet-Galerkin method
Calderón, Lucila Daniela
Martín, María Teresa
Vampa, Victoria Cristina
Muszkats, Juan Pablo
Seminara, Silvia Alejandra
Troparevsky, María Inés
Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems
topic_facet Ingeniería
Matemática
differential equations
oscillatory functions
Wavelet-Galerkin method
description The use of multiresolution techniques and wavelets has become increa-singly popular in the development of numerical schemes for the solution of differential equations. Wavelet’s properties make them useful for developing hierarchical solutions to many engineering problems. They are well localized, oscillatory functions which provide a basis of the space of functions on the real line. We show the construction of derivative-orthogonal B-spline wavelets on the interval which have simple structure and provide sparse and well-conditioned matrices when they are used for solving differential equations with the wavelet-Galerkin method.
format Objeto de conferencia
Objeto de conferencia
author Calderón, Lucila Daniela
Martín, María Teresa
Vampa, Victoria Cristina
Muszkats, Juan Pablo
Seminara, Silvia Alejandra
Troparevsky, María Inés
author_facet Calderón, Lucila Daniela
Martín, María Teresa
Vampa, Victoria Cristina
Muszkats, Juan Pablo
Seminara, Silvia Alejandra
Troparevsky, María Inés
author_sort Calderón, Lucila Daniela
title Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems
title_short Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems
title_full Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems
title_fullStr Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems
title_full_unstemmed Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems
title_sort wavelet b-splines bases on the interval for solving boundary value problems
publisher Springer
publishDate 2020
url http://sedici.unlp.edu.ar/handle/10915/134801
work_keys_str_mv AT calderonluciladaniela waveletbsplinesbasesontheintervalforsolvingboundaryvalueproblems
AT martinmariateresa waveletbsplinesbasesontheintervalforsolvingboundaryvalueproblems
AT vampavictoriacristina waveletbsplinesbasesontheintervalforsolvingboundaryvalueproblems
AT muszkatsjuanpablo waveletbsplinesbasesontheintervalforsolvingboundaryvalueproblems
AT seminarasilviaalejandra waveletbsplinesbasesontheintervalforsolvingboundaryvalueproblems
AT troparevskymariaines waveletbsplinesbasesontheintervalforsolvingboundaryvalueproblems
bdutipo_str Repositorios
_version_ 1764820455502381057