Finite element analysis of the vibration problem of a plate coupled with a fluid

We consider the approximation of the vibration modes of an elastic plate in contact with a compressible fluid. The plate is modelled by Reissner-Mindlin equations while the fluid is described in terms of displacement variables. This formulation leads to a symmetric eigenvalue problem. Reissner-Mindl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Durán, Ricardo Guillermo, Hervella Nieto, L., Liberman, Elsa, Rodríguez, Rodolfo, Solomín, Jorge Eduardo
Formato: Articulo
Lenguaje:Inglés
Publicado: 2000
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/139167
Aporte de:
id I19-R120-10915-139167
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Matemática
Ciencias Exactas
eigenvalues
eigenvectors
vibration modes
elastic plate
spellingShingle Matemática
Ciencias Exactas
eigenvalues
eigenvectors
vibration modes
elastic plate
Durán, Ricardo Guillermo
Hervella Nieto, L.
Liberman, Elsa
Rodríguez, Rodolfo
Solomín, Jorge Eduardo
Finite element analysis of the vibration problem of a plate coupled with a fluid
topic_facet Matemática
Ciencias Exactas
eigenvalues
eigenvectors
vibration modes
elastic plate
description We consider the approximation of the vibration modes of an elastic plate in contact with a compressible fluid. The plate is modelled by Reissner-Mindlin equations while the fluid is described in terms of displacement variables. This formulation leads to a symmetric eigenvalue problem. Reissner-Mindlin equations are discretized by a mixed method, the equations for the fluid with Raviart-Thomas elements and a non conforming coupling is used on the interface. In order to prove that the method is locking free we consider a family of problems, one for each thickness t>0, and introduce appropriate scalings for the physical parameters so that these problems attain a limit when t→0. We prove that spurious eigenvalues do not arise with this discretization and we obtain optimal order error estimates for the eigenvalues and eigenvectors valid uniformly on the thickness parameter t. Finally we present numerical results confirming the good performance of the method.
format Articulo
Articulo
author Durán, Ricardo Guillermo
Hervella Nieto, L.
Liberman, Elsa
Rodríguez, Rodolfo
Solomín, Jorge Eduardo
author_facet Durán, Ricardo Guillermo
Hervella Nieto, L.
Liberman, Elsa
Rodríguez, Rodolfo
Solomín, Jorge Eduardo
author_sort Durán, Ricardo Guillermo
title Finite element analysis of the vibration problem of a plate coupled with a fluid
title_short Finite element analysis of the vibration problem of a plate coupled with a fluid
title_full Finite element analysis of the vibration problem of a plate coupled with a fluid
title_fullStr Finite element analysis of the vibration problem of a plate coupled with a fluid
title_full_unstemmed Finite element analysis of the vibration problem of a plate coupled with a fluid
title_sort finite element analysis of the vibration problem of a plate coupled with a fluid
publishDate 2000
url http://sedici.unlp.edu.ar/handle/10915/139167
work_keys_str_mv AT duranricardoguillermo finiteelementanalysisofthevibrationproblemofaplatecoupledwithafluid
AT hervellanietol finiteelementanalysisofthevibrationproblemofaplatecoupledwithafluid
AT libermanelsa finiteelementanalysisofthevibrationproblemofaplatecoupledwithafluid
AT rodriguezrodolfo finiteelementanalysisofthevibrationproblemofaplatecoupledwithafluid
AT solominjorgeeduardo finiteelementanalysisofthevibrationproblemofaplatecoupledwithafluid
bdutipo_str Repositorios
_version_ 1764820457170665474