Finite element analysis of the vibration problem of a plate coupled with a fluid
We consider the approximation of the vibration modes of an elastic plate in contact with a compressible fluid. The plate is modelled by Reissner-Mindlin equations while the fluid is described in terms of displacement variables. This formulation leads to a symmetric eigenvalue problem. Reissner-Mindl...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | Articulo |
Lenguaje: | Inglés |
Publicado: |
2000
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/139167 |
Aporte de: |
id |
I19-R120-10915-139167 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Inglés |
topic |
Matemática Ciencias Exactas eigenvalues eigenvectors vibration modes elastic plate |
spellingShingle |
Matemática Ciencias Exactas eigenvalues eigenvectors vibration modes elastic plate Durán, Ricardo Guillermo Hervella Nieto, L. Liberman, Elsa Rodríguez, Rodolfo Solomín, Jorge Eduardo Finite element analysis of the vibration problem of a plate coupled with a fluid |
topic_facet |
Matemática Ciencias Exactas eigenvalues eigenvectors vibration modes elastic plate |
description |
We consider the approximation of the vibration modes of an elastic plate in contact with a compressible fluid. The plate is modelled by Reissner-Mindlin equations while the fluid is described in terms of displacement variables. This formulation leads to a symmetric eigenvalue problem. Reissner-Mindlin equations are discretized by a mixed method, the equations for the fluid with Raviart-Thomas elements and a non conforming coupling is used on the interface. In order to prove that the method is locking free we consider a family of problems, one for each thickness t>0, and introduce appropriate scalings for the physical parameters so that these problems attain a limit when t→0. We prove that spurious eigenvalues do not arise with this discretization and we obtain optimal order error estimates for the eigenvalues and eigenvectors valid uniformly on the thickness parameter t. Finally we present numerical results confirming the good performance of the method. |
format |
Articulo Articulo |
author |
Durán, Ricardo Guillermo Hervella Nieto, L. Liberman, Elsa Rodríguez, Rodolfo Solomín, Jorge Eduardo |
author_facet |
Durán, Ricardo Guillermo Hervella Nieto, L. Liberman, Elsa Rodríguez, Rodolfo Solomín, Jorge Eduardo |
author_sort |
Durán, Ricardo Guillermo |
title |
Finite element analysis of the vibration problem of a plate coupled with a fluid |
title_short |
Finite element analysis of the vibration problem of a plate coupled with a fluid |
title_full |
Finite element analysis of the vibration problem of a plate coupled with a fluid |
title_fullStr |
Finite element analysis of the vibration problem of a plate coupled with a fluid |
title_full_unstemmed |
Finite element analysis of the vibration problem of a plate coupled with a fluid |
title_sort |
finite element analysis of the vibration problem of a plate coupled with a fluid |
publishDate |
2000 |
url |
http://sedici.unlp.edu.ar/handle/10915/139167 |
work_keys_str_mv |
AT duranricardoguillermo finiteelementanalysisofthevibrationproblemofaplatecoupledwithafluid AT hervellanietol finiteelementanalysisofthevibrationproblemofaplatecoupledwithafluid AT libermanelsa finiteelementanalysisofthevibrationproblemofaplatecoupledwithafluid AT rodriguezrodolfo finiteelementanalysisofthevibrationproblemofaplatecoupledwithafluid AT solominjorgeeduardo finiteelementanalysisofthevibrationproblemofaplatecoupledwithafluid |
bdutipo_str |
Repositorios |
_version_ |
1764820457170665474 |