Dynamic grouping of vehicle trajectories

Vehicular traffic volume in large cities has increased in recent years, causing mobility problems; therefore, the analysis of vehicle flow data becomes a relevant research topic. Intelligent Transportation Systems monitor and control vehicular movements by collecting GPS trajectories, which provides...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Reyes, Gary, Lanzarini, Laura Cristina, Estrebou, César Armando, Fernández Bariviera, Aurelio
Formato: Articulo
Lenguaje:Inglés
Publicado: 2022
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/146927
Aporte de:
id I19-R120-10915-146927
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
Dynamic clustering
Data stream
Vehicular trajectories
Agrupamiento dinámico
Flujo de datos
Trayectorias vehiculares
spellingShingle Ciencias Informáticas
Dynamic clustering
Data stream
Vehicular trajectories
Agrupamiento dinámico
Flujo de datos
Trayectorias vehiculares
Reyes, Gary
Lanzarini, Laura Cristina
Estrebou, César Armando
Fernández Bariviera, Aurelio
Dynamic grouping of vehicle trajectories
topic_facet Ciencias Informáticas
Dynamic clustering
Data stream
Vehicular trajectories
Agrupamiento dinámico
Flujo de datos
Trayectorias vehiculares
description Vehicular traffic volume in large cities has increased in recent years, causing mobility problems; therefore, the analysis of vehicle flow data becomes a relevant research topic. Intelligent Transportation Systems monitor and control vehicular movements by collecting GPS trajectories, which provides the geographic location of vehicles in real time. Thus information is processed using clustering techniques to identify vehicular flow patterns. This work presents a methodology capable of analyzing the vehicular flow in a given area, identifying speed ranges and keeping an interactive map updated that facilitates the identification of possible traffic jam areas. The obtained results on three data sets from the cities of Guayaquil-Ecuador, Rome- Italy and Beijing-China are satisfactory and clearly represent the speed of movement of the vehicles, automatically identifying the most representative ranges in real time.
format Articulo
Articulo
author Reyes, Gary
Lanzarini, Laura Cristina
Estrebou, César Armando
Fernández Bariviera, Aurelio
author_facet Reyes, Gary
Lanzarini, Laura Cristina
Estrebou, César Armando
Fernández Bariviera, Aurelio
author_sort Reyes, Gary
title Dynamic grouping of vehicle trajectories
title_short Dynamic grouping of vehicle trajectories
title_full Dynamic grouping of vehicle trajectories
title_fullStr Dynamic grouping of vehicle trajectories
title_full_unstemmed Dynamic grouping of vehicle trajectories
title_sort dynamic grouping of vehicle trajectories
publishDate 2022
url http://sedici.unlp.edu.ar/handle/10915/146927
work_keys_str_mv AT reyesgary dynamicgroupingofvehicletrajectories
AT lanzarinilauracristina dynamicgroupingofvehicletrajectories
AT estreboucesararmando dynamicgroupingofvehicletrajectories
AT fernandezbarivieraaurelio dynamicgroupingofvehicletrajectories
AT reyesgary agrupamientodinamicodetrayectoriasvehiculares
AT lanzarinilauracristina agrupamientodinamicodetrayectoriasvehiculares
AT estreboucesararmando agrupamientodinamicodetrayectoriasvehiculares
AT fernandezbarivieraaurelio agrupamientodinamicodetrayectoriasvehiculares
bdutipo_str Repositorios
_version_ 1764820460601606144