Dynamic grouping of vehicle trajectories
Vehicular traffic volume in large cities has increased in recent years, causing mobility problems; therefore, the analysis of vehicle flow data becomes a relevant research topic. Intelligent Transportation Systems monitor and control vehicular movements by collecting GPS trajectories, which provides...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2022
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/146927 |
| Aporte de: |
| id |
I19-R120-10915-146927 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Ciencias Informáticas Dynamic clustering Data stream Vehicular trajectories Agrupamiento dinámico Flujo de datos Trayectorias vehiculares |
| spellingShingle |
Ciencias Informáticas Dynamic clustering Data stream Vehicular trajectories Agrupamiento dinámico Flujo de datos Trayectorias vehiculares Reyes, Gary Lanzarini, Laura Cristina Estrebou, César Armando Fernández Bariviera, Aurelio Dynamic grouping of vehicle trajectories |
| topic_facet |
Ciencias Informáticas Dynamic clustering Data stream Vehicular trajectories Agrupamiento dinámico Flujo de datos Trayectorias vehiculares |
| description |
Vehicular traffic volume in large cities has increased in recent years, causing mobility problems; therefore, the analysis of vehicle flow data becomes a relevant research topic. Intelligent Transportation Systems monitor and control vehicular movements by collecting GPS trajectories, which provides the geographic location of vehicles in real time. Thus information is processed using clustering techniques to identify vehicular flow patterns. This work presents a methodology capable of analyzing the vehicular flow in a given area, identifying speed ranges and keeping an interactive map updated that facilitates the identification of possible traffic jam areas. The obtained results on three data sets from the cities of Guayaquil-Ecuador, Rome- Italy and Beijing-China are satisfactory and clearly represent the speed of movement of the vehicles, automatically identifying the most representative ranges in real time. |
| format |
Articulo Articulo |
| author |
Reyes, Gary Lanzarini, Laura Cristina Estrebou, César Armando Fernández Bariviera, Aurelio |
| author_facet |
Reyes, Gary Lanzarini, Laura Cristina Estrebou, César Armando Fernández Bariviera, Aurelio |
| author_sort |
Reyes, Gary |
| title |
Dynamic grouping of vehicle trajectories |
| title_short |
Dynamic grouping of vehicle trajectories |
| title_full |
Dynamic grouping of vehicle trajectories |
| title_fullStr |
Dynamic grouping of vehicle trajectories |
| title_full_unstemmed |
Dynamic grouping of vehicle trajectories |
| title_sort |
dynamic grouping of vehicle trajectories |
| publishDate |
2022 |
| url |
http://sedici.unlp.edu.ar/handle/10915/146927 |
| work_keys_str_mv |
AT reyesgary dynamicgroupingofvehicletrajectories AT lanzarinilauracristina dynamicgroupingofvehicletrajectories AT estreboucesararmando dynamicgroupingofvehicletrajectories AT fernandezbarivieraaurelio dynamicgroupingofvehicletrajectories AT reyesgary agrupamientodinamicodetrayectoriasvehiculares AT lanzarinilauracristina agrupamientodinamicodetrayectoriasvehiculares AT estreboucesararmando agrupamientodinamicodetrayectoriasvehiculares AT fernandezbarivieraaurelio agrupamientodinamicodetrayectoriasvehiculares |
| bdutipo_str |
Repositorios |
| _version_ |
1764820460601606144 |