Extended proton-neutron quasiparticle random-phase approximation in a boson expansion method
The proton-neutron quasiparticle random phase approximation (pn-QRPA) is extended to include next to leading order terms of the QRPA harmonic expansion. The procedure is tested for the case of a separable Hamiltonian in the SO(5) symmetry representation. The pn-QRPA equation of motion is solved by u...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
1999
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/160188 |
| Aporte de: |
| id |
I19-R120-10915-160188 |
|---|---|
| record_format |
dspace |
| spelling |
I19-R120-10915-1601882023-11-15T20:07:07Z http://sedici.unlp.edu.ar/handle/10915/160188 Extended proton-neutron quasiparticle random-phase approximation in a boson expansion method Civitarese, Enrique Osvaldo Montani, Fernando Fabián Reboiro, Marta 1999 2023-11-15T16:04:17Z en Física Fermi transitions. proton-neutron correlations The proton-neutron quasiparticle random phase approximation (pn-QRPA) is extended to include next to leading order terms of the QRPA harmonic expansion. The procedure is tested for the case of a separable Hamiltonian in the SO(5) symmetry representation. The pn-QRPA equation of motion is solved by using a boson expansion technique adapted to the treatment of proton-neutron correlations. The resulting wave functions are used to calculate the matrix elements of double-Fermi transitions. Facultad de Ciencias Exactas Articulo Articulo http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Física Fermi transitions. proton-neutron correlations |
| spellingShingle |
Física Fermi transitions. proton-neutron correlations Civitarese, Enrique Osvaldo Montani, Fernando Fabián Reboiro, Marta Extended proton-neutron quasiparticle random-phase approximation in a boson expansion method |
| topic_facet |
Física Fermi transitions. proton-neutron correlations |
| description |
The proton-neutron quasiparticle random phase approximation (pn-QRPA) is extended to include next to leading order terms of the QRPA harmonic expansion. The procedure is tested for the case of a separable Hamiltonian in the SO(5) symmetry representation. The pn-QRPA equation of motion is solved by using a boson expansion technique adapted to the treatment of proton-neutron correlations. The resulting wave functions are used to calculate the matrix elements of double-Fermi transitions. |
| format |
Articulo Articulo |
| author |
Civitarese, Enrique Osvaldo Montani, Fernando Fabián Reboiro, Marta |
| author_facet |
Civitarese, Enrique Osvaldo Montani, Fernando Fabián Reboiro, Marta |
| author_sort |
Civitarese, Enrique Osvaldo |
| title |
Extended proton-neutron quasiparticle random-phase approximation in a boson expansion method |
| title_short |
Extended proton-neutron quasiparticle random-phase approximation in a boson expansion method |
| title_full |
Extended proton-neutron quasiparticle random-phase approximation in a boson expansion method |
| title_fullStr |
Extended proton-neutron quasiparticle random-phase approximation in a boson expansion method |
| title_full_unstemmed |
Extended proton-neutron quasiparticle random-phase approximation in a boson expansion method |
| title_sort |
extended proton-neutron quasiparticle random-phase approximation in a boson expansion method |
| publishDate |
1999 |
| url |
http://sedici.unlp.edu.ar/handle/10915/160188 |
| work_keys_str_mv |
AT civitareseenriqueosvaldo extendedprotonneutronquasiparticlerandomphaseapproximationinabosonexpansionmethod AT montanifernandofabian extendedprotonneutronquasiparticlerandomphaseapproximationinabosonexpansionmethod AT reboiromarta extendedprotonneutronquasiparticlerandomphaseapproximationinabosonexpansionmethod |
| _version_ |
1807221846612901888 |