Modernizing MDD Diagnosis using Deep Learning from EEG Data
Major depressive disorder (MDD) is a widespread illness significantly impacting individuals’ quality of life. Its diagnosis through Electroencephalogram (EEG) has long been studied in mental health research. Recent advancements in deep learning present a promising pathway for enhancing MDD diagnosis...
Guardado en:
| Autores principales: | , , , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2024
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/171706 |
| Aporte de: |
| id |
I19-R120-10915-171706 |
|---|---|
| record_format |
dspace |
| spelling |
I19-R120-10915-1717062024-10-21T20:03:02Z http://sedici.unlp.edu.ar/handle/10915/171706 Modernizing MDD Diagnosis using Deep Learning from EEG Data Lebedinsky, Milena Leguizamon, Rocío Pytel, Pablo Chatterjee, P. Pollo Cattaneo, María Florencia 2024-06 2024 2024-10-21T12:41:34Z en Ciencias Informáticas Major Depression Disorder Electroencephalogram Deep Learning Major depressive disorder (MDD) is a widespread illness significantly impacting individuals’ quality of life. Its diagnosis through Electroencephalogram (EEG) has long been studied in mental health research. Recent advancements in deep learning present a promising pathway for enhancing MDD diagnosis through EEGs. This study integrates state-of-the-art deep learning techniques, including ConvNext and Transformers architectures, into MDD prediction models. Results demonstrate ConvNext models’ robustness and efficiency, in terms of precision and specificity, while Transformer models exhibit high recall and sensitivity for diagnosing MDD from incomplete studies. Facultad de Informática Objeto de conferencia Objeto de conferencia http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf 1-5 |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Ciencias Informáticas Major Depression Disorder Electroencephalogram Deep Learning |
| spellingShingle |
Ciencias Informáticas Major Depression Disorder Electroencephalogram Deep Learning Lebedinsky, Milena Leguizamon, Rocío Pytel, Pablo Chatterjee, P. Pollo Cattaneo, María Florencia Modernizing MDD Diagnosis using Deep Learning from EEG Data |
| topic_facet |
Ciencias Informáticas Major Depression Disorder Electroencephalogram Deep Learning |
| description |
Major depressive disorder (MDD) is a widespread illness significantly impacting individuals’ quality of life. Its diagnosis through Electroencephalogram (EEG) has long been studied in mental health research. Recent advancements in deep learning present a promising pathway for enhancing MDD diagnosis through EEGs. This study integrates state-of-the-art deep learning techniques, including ConvNext and Transformers architectures, into MDD prediction models. Results demonstrate ConvNext models’ robustness and efficiency, in terms of precision and specificity, while Transformer models exhibit high recall and sensitivity for diagnosing MDD from incomplete studies. |
| format |
Objeto de conferencia Objeto de conferencia |
| author |
Lebedinsky, Milena Leguizamon, Rocío Pytel, Pablo Chatterjee, P. Pollo Cattaneo, María Florencia |
| author_facet |
Lebedinsky, Milena Leguizamon, Rocío Pytel, Pablo Chatterjee, P. Pollo Cattaneo, María Florencia |
| author_sort |
Lebedinsky, Milena |
| title |
Modernizing MDD Diagnosis using Deep Learning from EEG Data |
| title_short |
Modernizing MDD Diagnosis using Deep Learning from EEG Data |
| title_full |
Modernizing MDD Diagnosis using Deep Learning from EEG Data |
| title_fullStr |
Modernizing MDD Diagnosis using Deep Learning from EEG Data |
| title_full_unstemmed |
Modernizing MDD Diagnosis using Deep Learning from EEG Data |
| title_sort |
modernizing mdd diagnosis using deep learning from eeg data |
| publishDate |
2024 |
| url |
http://sedici.unlp.edu.ar/handle/10915/171706 |
| work_keys_str_mv |
AT lebedinskymilena modernizingmdddiagnosisusingdeeplearningfromeegdata AT leguizamonrocio modernizingmdddiagnosisusingdeeplearningfromeegdata AT pytelpablo modernizingmdddiagnosisusingdeeplearningfromeegdata AT chatterjeep modernizingmdddiagnosisusingdeeplearningfromeegdata AT pollocattaneomariaflorencia modernizingmdddiagnosisusingdeeplearningfromeegdata |
| _version_ |
1826544438270230528 |