Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification

The field of interpretability in Deep Learning faces significant challenges due to the lack of standard metrics for systematically evaluating and comparing interpretability methods. The absence of quantifiable measures impedes practitioners ability to select the most suitable methods and models for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Stanchi, Oscar Agustín, Ronchetti, Franco, Dal Bianco, Pedro Alejandro, Ríos, Gastón Gustavo, Hasperué, Waldo, Puig Valls, Domenec, Rashwan, Hatem, Quiroga, Facundo Manuel
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2024
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/176288
Aporte de:
id I19-R120-10915-176288
record_format dspace
spelling I19-R120-10915-1762882025-02-07T20:04:55Z http://sedici.unlp.edu.ar/handle/10915/176288 Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification Stanchi, Oscar Agustín Ronchetti, Franco Dal Bianco, Pedro Alejandro Ríos, Gastón Gustavo Hasperué, Waldo Puig Valls, Domenec Rashwan, Hatem Quiroga, Facundo Manuel 2024-10 2024 2025-02-07T17:25:08Z en Ciencias Informáticas Ablation Black Box Computer Vision Deep Learning Interpretability Quantitative Measure White Box The field of interpretability in Deep Learning faces significant challenges due to the lack of standard metrics for systematically evaluating and comparing interpretability methods. The absence of quantifiable measures impedes practitioners ability to select the most suitable methods and models for their specific tasks. To address this issue, we propose the Pixel Erosion and Dilation Score, a novel metric designed to assess the robustness of model explanations. Our approach involves applying iterative erosion and dilation processes to heatmaps generated by various interpretability methods, thereby using them to hide and show the important regions of a image to the network, allowing for a coherent and interpretable evaluation of model decision-making processes. We conduct quantitative ablation tests using our metric on the ImageNet dataset with both VGG16 and ResNet18 models. The results reveal that our new measure provides a numerical and intuitive means for comparing interpretability methods and models, facilitating more informed decision-making for practitioner. Red de Universidades con Carreras en Informática Objeto de conferencia Objeto de conferencia http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf 125-134
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
Ablation
Black Box
Computer Vision
Deep Learning
Interpretability
Quantitative Measure
White Box
spellingShingle Ciencias Informáticas
Ablation
Black Box
Computer Vision
Deep Learning
Interpretability
Quantitative Measure
White Box
Stanchi, Oscar Agustín
Ronchetti, Franco
Dal Bianco, Pedro Alejandro
Ríos, Gastón Gustavo
Hasperué, Waldo
Puig Valls, Domenec
Rashwan, Hatem
Quiroga, Facundo Manuel
Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification
topic_facet Ciencias Informáticas
Ablation
Black Box
Computer Vision
Deep Learning
Interpretability
Quantitative Measure
White Box
description The field of interpretability in Deep Learning faces significant challenges due to the lack of standard metrics for systematically evaluating and comparing interpretability methods. The absence of quantifiable measures impedes practitioners ability to select the most suitable methods and models for their specific tasks. To address this issue, we propose the Pixel Erosion and Dilation Score, a novel metric designed to assess the robustness of model explanations. Our approach involves applying iterative erosion and dilation processes to heatmaps generated by various interpretability methods, thereby using them to hide and show the important regions of a image to the network, allowing for a coherent and interpretable evaluation of model decision-making processes. We conduct quantitative ablation tests using our metric on the ImageNet dataset with both VGG16 and ResNet18 models. The results reveal that our new measure provides a numerical and intuitive means for comparing interpretability methods and models, facilitating more informed decision-making for practitioner.
format Objeto de conferencia
Objeto de conferencia
author Stanchi, Oscar Agustín
Ronchetti, Franco
Dal Bianco, Pedro Alejandro
Ríos, Gastón Gustavo
Hasperué, Waldo
Puig Valls, Domenec
Rashwan, Hatem
Quiroga, Facundo Manuel
author_facet Stanchi, Oscar Agustín
Ronchetti, Franco
Dal Bianco, Pedro Alejandro
Ríos, Gastón Gustavo
Hasperué, Waldo
Puig Valls, Domenec
Rashwan, Hatem
Quiroga, Facundo Manuel
author_sort Stanchi, Oscar Agustín
title Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification
title_short Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification
title_full Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification
title_fullStr Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification
title_full_unstemmed Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification
title_sort quantitative evaluation of white & black box interpretability methods for image classification
publishDate 2024
url http://sedici.unlp.edu.ar/handle/10915/176288
work_keys_str_mv AT stanchioscaragustin quantitativeevaluationofwhiteblackboxinterpretabilitymethodsforimageclassification
AT ronchettifranco quantitativeevaluationofwhiteblackboxinterpretabilitymethodsforimageclassification
AT dalbiancopedroalejandro quantitativeevaluationofwhiteblackboxinterpretabilitymethodsforimageclassification
AT riosgastongustavo quantitativeevaluationofwhiteblackboxinterpretabilitymethodsforimageclassification
AT hasperuewaldo quantitativeevaluationofwhiteblackboxinterpretabilitymethodsforimageclassification
AT puigvallsdomenec quantitativeevaluationofwhiteblackboxinterpretabilitymethodsforimageclassification
AT rashwanhatem quantitativeevaluationofwhiteblackboxinterpretabilitymethodsforimageclassification
AT quirogafacundomanuel quantitativeevaluationofwhiteblackboxinterpretabilitymethodsforimageclassification
_version_ 1845116778679631872