Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification
The field of interpretability in Deep Learning faces significant challenges due to the lack of standard metrics for systematically evaluating and comparing interpretability methods. The absence of quantifiable measures impedes practitioners ability to select the most suitable methods and models for...
Guardado en:
| Autores principales: | , , , , , , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2024
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/176288 |
| Aporte de: |
| id |
I19-R120-10915-176288 |
|---|---|
| record_format |
dspace |
| spelling |
I19-R120-10915-1762882025-02-07T20:04:55Z http://sedici.unlp.edu.ar/handle/10915/176288 Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification Stanchi, Oscar Agustín Ronchetti, Franco Dal Bianco, Pedro Alejandro Ríos, Gastón Gustavo Hasperué, Waldo Puig Valls, Domenec Rashwan, Hatem Quiroga, Facundo Manuel 2024-10 2024 2025-02-07T17:25:08Z en Ciencias Informáticas Ablation Black Box Computer Vision Deep Learning Interpretability Quantitative Measure White Box The field of interpretability in Deep Learning faces significant challenges due to the lack of standard metrics for systematically evaluating and comparing interpretability methods. The absence of quantifiable measures impedes practitioners ability to select the most suitable methods and models for their specific tasks. To address this issue, we propose the Pixel Erosion and Dilation Score, a novel metric designed to assess the robustness of model explanations. Our approach involves applying iterative erosion and dilation processes to heatmaps generated by various interpretability methods, thereby using them to hide and show the important regions of a image to the network, allowing for a coherent and interpretable evaluation of model decision-making processes. We conduct quantitative ablation tests using our metric on the ImageNet dataset with both VGG16 and ResNet18 models. The results reveal that our new measure provides a numerical and intuitive means for comparing interpretability methods and models, facilitating more informed decision-making for practitioner. Red de Universidades con Carreras en Informática Objeto de conferencia Objeto de conferencia http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf 125-134 |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Ciencias Informáticas Ablation Black Box Computer Vision Deep Learning Interpretability Quantitative Measure White Box |
| spellingShingle |
Ciencias Informáticas Ablation Black Box Computer Vision Deep Learning Interpretability Quantitative Measure White Box Stanchi, Oscar Agustín Ronchetti, Franco Dal Bianco, Pedro Alejandro Ríos, Gastón Gustavo Hasperué, Waldo Puig Valls, Domenec Rashwan, Hatem Quiroga, Facundo Manuel Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification |
| topic_facet |
Ciencias Informáticas Ablation Black Box Computer Vision Deep Learning Interpretability Quantitative Measure White Box |
| description |
The field of interpretability in Deep Learning faces significant challenges due to the lack of standard metrics for systematically evaluating and comparing interpretability methods. The absence of quantifiable measures impedes practitioners ability to select the most suitable methods and models for their specific tasks. To address this issue, we propose the Pixel Erosion and Dilation Score, a novel metric designed to assess the robustness of model explanations. Our approach involves applying iterative erosion and dilation processes to heatmaps generated by various interpretability methods, thereby using them to hide and show the important regions of a image to the network, allowing for a coherent and interpretable evaluation of model decision-making processes. We conduct quantitative ablation tests using our metric on the ImageNet dataset with both VGG16 and ResNet18 models. The results reveal that our new measure provides a numerical and intuitive means for comparing interpretability methods and models, facilitating more informed decision-making for practitioner. |
| format |
Objeto de conferencia Objeto de conferencia |
| author |
Stanchi, Oscar Agustín Ronchetti, Franco Dal Bianco, Pedro Alejandro Ríos, Gastón Gustavo Hasperué, Waldo Puig Valls, Domenec Rashwan, Hatem Quiroga, Facundo Manuel |
| author_facet |
Stanchi, Oscar Agustín Ronchetti, Franco Dal Bianco, Pedro Alejandro Ríos, Gastón Gustavo Hasperué, Waldo Puig Valls, Domenec Rashwan, Hatem Quiroga, Facundo Manuel |
| author_sort |
Stanchi, Oscar Agustín |
| title |
Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification |
| title_short |
Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification |
| title_full |
Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification |
| title_fullStr |
Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification |
| title_full_unstemmed |
Quantitative Evaluation of White & Black Box Interpretability Methods for Image Classification |
| title_sort |
quantitative evaluation of white & black box interpretability methods for image classification |
| publishDate |
2024 |
| url |
http://sedici.unlp.edu.ar/handle/10915/176288 |
| work_keys_str_mv |
AT stanchioscaragustin quantitativeevaluationofwhiteblackboxinterpretabilitymethodsforimageclassification AT ronchettifranco quantitativeevaluationofwhiteblackboxinterpretabilitymethodsforimageclassification AT dalbiancopedroalejandro quantitativeevaluationofwhiteblackboxinterpretabilitymethodsforimageclassification AT riosgastongustavo quantitativeevaluationofwhiteblackboxinterpretabilitymethodsforimageclassification AT hasperuewaldo quantitativeevaluationofwhiteblackboxinterpretabilitymethodsforimageclassification AT puigvallsdomenec quantitativeevaluationofwhiteblackboxinterpretabilitymethodsforimageclassification AT rashwanhatem quantitativeevaluationofwhiteblackboxinterpretabilitymethodsforimageclassification AT quirogafacundomanuel quantitativeevaluationofwhiteblackboxinterpretabilitymethodsforimageclassification |
| _version_ |
1845116778679631872 |