Feature selection with simple ANN ensembles
Feature selection is a well-known pre-processing technique, commonly used with high-dimensional datasets. Its main goal is to discard useless or redundant variables, reducing the dimensionality of the input space, in order to increase the performance and interpretability of models. In this work we i...
Guardado en:
Autores principales: | , |
---|---|
Formato: | Objeto de conferencia |
Lenguaje: | Inglés |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/20884 |
Aporte de: |
id |
I19-R120-10915-20884 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Inglés |
topic |
Ciencias Informáticas Process metrics feature selection |
spellingShingle |
Ciencias Informáticas Process metrics feature selection Izetta Riera, C. Javier Granitto, Pablo Miguel Feature selection with simple ANN ensembles |
topic_facet |
Ciencias Informáticas Process metrics feature selection |
description |
Feature selection is a well-known pre-processing technique, commonly used with high-dimensional datasets. Its main goal is to discard useless or redundant variables, reducing the dimensionality of the input space, in order to increase the performance and interpretability of models. In this work we introduce the ANN-RFE, a new technique for feature selection that combines the accurate and time-e cient RFE method with the strong discrimination capabilities of ANN ensembles.
In particular, we discuss two feature importance metrics that can be used with ANN-RFE: the shu ing and dE metrics. We evaluate the new method using an arti cial example and ve real-world wide datasets, including gene-expression data. Our results suggest that both metrics have equivalent capabilities for the selection of informative variables. ANNRFE seems to produce overall results that are equivalent to previous e cient methods, but can be more accurate on particular datasets. |
format |
Objeto de conferencia Objeto de conferencia |
author |
Izetta Riera, C. Javier Granitto, Pablo Miguel |
author_facet |
Izetta Riera, C. Javier Granitto, Pablo Miguel |
author_sort |
Izetta Riera, C. Javier |
title |
Feature selection with simple ANN ensembles |
title_short |
Feature selection with simple ANN ensembles |
title_full |
Feature selection with simple ANN ensembles |
title_fullStr |
Feature selection with simple ANN ensembles |
title_full_unstemmed |
Feature selection with simple ANN ensembles |
title_sort |
feature selection with simple ann ensembles |
publishDate |
2009 |
url |
http://sedici.unlp.edu.ar/handle/10915/20884 |
work_keys_str_mv |
AT izettarieracjavier featureselectionwithsimpleannensembles AT granittopablomiguel featureselectionwithsimpleannensembles |
bdutipo_str |
Repositorios |
_version_ |
1764820465065394177 |