Feature selection with simple ANN ensembles

Feature selection is a well-known pre-processing technique, commonly used with high-dimensional datasets. Its main goal is to discard useless or redundant variables, reducing the dimensionality of the input space, in order to increase the performance and interpretability of models. In this work we i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Izetta Riera, C. Javier, Granitto, Pablo Miguel
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2009
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/20884
Aporte de:
id I19-R120-10915-20884
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
Process metrics
feature selection
spellingShingle Ciencias Informáticas
Process metrics
feature selection
Izetta Riera, C. Javier
Granitto, Pablo Miguel
Feature selection with simple ANN ensembles
topic_facet Ciencias Informáticas
Process metrics
feature selection
description Feature selection is a well-known pre-processing technique, commonly used with high-dimensional datasets. Its main goal is to discard useless or redundant variables, reducing the dimensionality of the input space, in order to increase the performance and interpretability of models. In this work we introduce the ANN-RFE, a new technique for feature selection that combines the accurate and time-e cient RFE method with the strong discrimination capabilities of ANN ensembles. In particular, we discuss two feature importance metrics that can be used with ANN-RFE: the shu ing and dE metrics. We evaluate the new method using an arti cial example and ve real-world wide datasets, including gene-expression data. Our results suggest that both metrics have equivalent capabilities for the selection of informative variables. ANNRFE seems to produce overall results that are equivalent to previous e cient methods, but can be more accurate on particular datasets.
format Objeto de conferencia
Objeto de conferencia
author Izetta Riera, C. Javier
Granitto, Pablo Miguel
author_facet Izetta Riera, C. Javier
Granitto, Pablo Miguel
author_sort Izetta Riera, C. Javier
title Feature selection with simple ANN ensembles
title_short Feature selection with simple ANN ensembles
title_full Feature selection with simple ANN ensembles
title_fullStr Feature selection with simple ANN ensembles
title_full_unstemmed Feature selection with simple ANN ensembles
title_sort feature selection with simple ann ensembles
publishDate 2009
url http://sedici.unlp.edu.ar/handle/10915/20884
work_keys_str_mv AT izettarieracjavier featureselectionwithsimpleannensembles
AT granittopablomiguel featureselectionwithsimpleannensembles
bdutipo_str Repositorios
_version_ 1764820465065394177