Completing categorical algebras : Extended abstract

Let Σ be a ranked set. A categorical Σ-algebra, cΣa for C, for short, is a small category C equipped with a functor σC : C n each σ ∈ Σn , n ≥ 0. A continuous categorical Σ-algebra is a cΣa which C; has an initial object and all colimits of ω-chains, i.e., functors N each functor σC preserves colimi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bloom, Stephen L., Esik, Zoltán
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2006
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/24407
Aporte de:
id I19-R120-10915-24407
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
categorical algebras
spellingShingle Ciencias Informáticas
categorical algebras
Bloom, Stephen L.
Esik, Zoltán
Completing categorical algebras : Extended abstract
topic_facet Ciencias Informáticas
categorical algebras
description Let Σ be a ranked set. A categorical Σ-algebra, cΣa for C, for short, is a small category C equipped with a functor σC : C n each σ ∈ Σn , n ≥ 0. A continuous categorical Σ-algebra is a cΣa which C; has an initial object and all colimits of ω-chains, i.e., functors N each functor σC preserves colimits of ω-chains. (N is the linearly ordered set of the nonnegative integers considered as a category as usual.) We prove that for any cΣa C there is an ω-continuous cΣa C ω , unique up to equivalence, which forms a “free continuous completion” of C. We generalize the notion of inequation (and equation) and show the inequations or equations that hold in C also hold in C ω . We then find examples of this completion when – C is a cΣa of finite Σ-trees – C is an ordered Σ algebra – C is a cΣa of finite A-sychronization trees – C is a cΣa of finite words on A.
format Objeto de conferencia
Objeto de conferencia
author Bloom, Stephen L.
Esik, Zoltán
author_facet Bloom, Stephen L.
Esik, Zoltán
author_sort Bloom, Stephen L.
title Completing categorical algebras : Extended abstract
title_short Completing categorical algebras : Extended abstract
title_full Completing categorical algebras : Extended abstract
title_fullStr Completing categorical algebras : Extended abstract
title_full_unstemmed Completing categorical algebras : Extended abstract
title_sort completing categorical algebras : extended abstract
publishDate 2006
url http://sedici.unlp.edu.ar/handle/10915/24407
work_keys_str_mv AT bloomstephenl completingcategoricalalgebrasextendedabstract
AT esikzoltan completingcategoricalalgebrasextendedabstract
bdutipo_str Repositorios
_version_ 1764820466032181248