Non-transverse factorizing fields and entanglement in finite spin systems
We determine the conditions for the existence of non-transverse factorizing magnetic fields in general spin arrays with anisotropic XY Z couplings of arbitrary range. It is first shown that a uniform maximally aligned completely separable eigenstate can exist just for fields hs parallel to a princip...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | Articulo |
Lenguaje: | Inglés |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/79183 |
Aporte de: |
id |
I19-R120-10915-79183 |
---|---|
record_format |
dspace |
spelling |
I19-R120-10915-791832023-06-15T15:28:55Z http://sedici.unlp.edu.ar/handle/10915/79183 issn:2469-9969 Non-transverse factorizing fields and entanglement in finite spin systems Cerezo de la Roca, Marco Vinicio Sebastián Rossignoli, Raúl Dante Canosa, Norma Beatriz 2015 2019-08-15T13:50:25Z en Física quantum spin systems entanglement factorization We determine the conditions for the existence of non-transverse factorizing magnetic fields in general spin arrays with anisotropic XY Z couplings of arbitrary range. It is first shown that a uniform maximally aligned completely separable eigenstate can exist just for fields hs parallel to a principal plane and forming four straight lines in field space, with the alignment direction different from that of hs and determined by the anisotropy. Such state always becomes a non-degenerate ground state (GS) for sufficiently strong (yet finite) fields along these lines, in both ferromagnetic (FM) and antiferromagnetic (AFM) type systems. In AFM chains, this field coexists with the nontransverse factorizing field h′ s associated with a degenerate N´eel-type separable GS, which is shown to arise at a level crossing in a finite chain. It is also demonstrated for arbitrary spin that pairwise entanglement reaches full range in the vicinity of both hs and h′ s, vanishing at hs but approaching small yet finite side-limits at h′ s, which are analytically determined. The behavior of the block entropy and entanglement spectrum in their vicinity is also analyzed. Facultad de Ciencias Exactas Instituto de Física La Plata Articulo Articulo http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Inglés |
topic |
Física quantum spin systems entanglement factorization |
spellingShingle |
Física quantum spin systems entanglement factorization Cerezo de la Roca, Marco Vinicio Sebastián Rossignoli, Raúl Dante Canosa, Norma Beatriz Non-transverse factorizing fields and entanglement in finite spin systems |
topic_facet |
Física quantum spin systems entanglement factorization |
description |
We determine the conditions for the existence of non-transverse factorizing magnetic fields in general spin arrays with anisotropic XY Z couplings of arbitrary range. It is first shown that a uniform maximally aligned completely separable eigenstate can exist just for fields hs parallel to a principal plane and forming four straight lines in field space, with the alignment direction different from that of hs and determined by the anisotropy. Such state always becomes a non-degenerate ground state (GS) for sufficiently strong (yet finite) fields along these lines, in both ferromagnetic (FM) and antiferromagnetic (AFM) type systems. In AFM chains, this field coexists with the nontransverse factorizing field h′ s associated with a degenerate N´eel-type separable GS, which is shown to arise at a level crossing in a finite chain. It is also demonstrated for arbitrary spin that pairwise entanglement reaches full range in the vicinity of both hs and h′ s, vanishing at hs but approaching small yet finite side-limits at h′ s, which are analytically determined. The behavior of the block entropy and entanglement spectrum in their vicinity is also analyzed. |
format |
Articulo Articulo |
author |
Cerezo de la Roca, Marco Vinicio Sebastián Rossignoli, Raúl Dante Canosa, Norma Beatriz |
author_facet |
Cerezo de la Roca, Marco Vinicio Sebastián Rossignoli, Raúl Dante Canosa, Norma Beatriz |
author_sort |
Cerezo de la Roca, Marco Vinicio Sebastián |
title |
Non-transverse factorizing fields and entanglement in finite spin systems |
title_short |
Non-transverse factorizing fields and entanglement in finite spin systems |
title_full |
Non-transverse factorizing fields and entanglement in finite spin systems |
title_fullStr |
Non-transverse factorizing fields and entanglement in finite spin systems |
title_full_unstemmed |
Non-transverse factorizing fields and entanglement in finite spin systems |
title_sort |
non-transverse factorizing fields and entanglement in finite spin systems |
publishDate |
2015 |
url |
http://sedici.unlp.edu.ar/handle/10915/79183 |
work_keys_str_mv |
AT cerezodelarocamarcoviniciosebastian nontransversefactorizingfieldsandentanglementinfinitespinsystems AT rossignolirauldante nontransversefactorizingfieldsandentanglementinfinitespinsystems AT canosanormabeatriz nontransversefactorizingfieldsandentanglementinfinitespinsystems |
_version_ |
1768902347551932416 |