Predictive QSPR study of the dissociation constants of diverse pharmaceutical compounds

The objective of the article was to perform a predictive analysis, based on quantitative structure-property relationships, of the dissociation constants (pKa) of different medicinal compounds (e.g., salicylic acid, salbutamol, lidocaine). Given the importance of this property in medicinal chemistry,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mercader, Andrew Gustavo, Goodarzi, Mohammad, Duchowicz, Pablo Román, Fernández, Francisco Marcelo, Castro, Eduardo Alberto
Formato: Articulo
Lenguaje:Inglés
Publicado: 2010
Materias:
pKa
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/82551
Aporte de:
id I19-R120-10915-82551
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Química
Enhanced replacement method
Pharmaceutical compounds
pKa
QSPR
spellingShingle Química
Enhanced replacement method
Pharmaceutical compounds
pKa
QSPR
Mercader, Andrew Gustavo
Goodarzi, Mohammad
Duchowicz, Pablo Román
Fernández, Francisco Marcelo
Castro, Eduardo Alberto
Predictive QSPR study of the dissociation constants of diverse pharmaceutical compounds
topic_facet Química
Enhanced replacement method
Pharmaceutical compounds
pKa
QSPR
description The objective of the article was to perform a predictive analysis, based on quantitative structure-property relationships, of the dissociation constants (pKa) of different medicinal compounds (e.g., salicylic acid, salbutamol, lidocaine). Given the importance of this property in medicinal chemistry, it is of interest to develop theoretical methods for its prediction. The descriptors selection from a pool containing more than a thousand geometrical, topological, quantum-mechanical, and electronic types of descriptors was performed using the enhanced replacement method. Genetic algorithm and the replacement method (RM) techniques were used as reference points. A new methodology for the selection of the optimal number of descriptors to include in a model was presented and successfully used, showing that the best model should contain four descriptors. The best quantitative structure-property relationships linear model constructed using 62 molecular structures not previously used in this type of quantitative structure-property study showed good predictive attributes. The root mean squared error of the 26 molecules test set was 0.5600. The analysis of the quantitative structure-property relationships model suggests that the dissociation constants depend significantly on the number of acceptor atoms for H-bonds and on the number of carboxylic acids present in the molecules.
format Articulo
Articulo
author Mercader, Andrew Gustavo
Goodarzi, Mohammad
Duchowicz, Pablo Román
Fernández, Francisco Marcelo
Castro, Eduardo Alberto
author_facet Mercader, Andrew Gustavo
Goodarzi, Mohammad
Duchowicz, Pablo Román
Fernández, Francisco Marcelo
Castro, Eduardo Alberto
author_sort Mercader, Andrew Gustavo
title Predictive QSPR study of the dissociation constants of diverse pharmaceutical compounds
title_short Predictive QSPR study of the dissociation constants of diverse pharmaceutical compounds
title_full Predictive QSPR study of the dissociation constants of diverse pharmaceutical compounds
title_fullStr Predictive QSPR study of the dissociation constants of diverse pharmaceutical compounds
title_full_unstemmed Predictive QSPR study of the dissociation constants of diverse pharmaceutical compounds
title_sort predictive qspr study of the dissociation constants of diverse pharmaceutical compounds
publishDate 2010
url http://sedici.unlp.edu.ar/handle/10915/82551
work_keys_str_mv AT mercaderandrewgustavo predictiveqsprstudyofthedissociationconstantsofdiversepharmaceuticalcompounds
AT goodarzimohammad predictiveqsprstudyofthedissociationconstantsofdiversepharmaceuticalcompounds
AT duchowiczpabloroman predictiveqsprstudyofthedissociationconstantsofdiversepharmaceuticalcompounds
AT fernandezfranciscomarcelo predictiveqsprstudyofthedissociationconstantsofdiversepharmaceuticalcompounds
AT castroeduardoalberto predictiveqsprstudyofthedissociationconstantsofdiversepharmaceuticalcompounds
bdutipo_str Repositorios
_version_ 1764820488395161601