Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls

Axolotls are unique in their ability to regenerate the spinal cord. However, the mechanisms that underlie this phenomenon remain poorly understood. Previously, we showed that regenerating stem cells in the axolotl spinal cord revert to a molecular state resembling embryonic neuroepithelial cells and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rost, Fabian, Albors, Aida Rodrigo, Mazurov, Vladimir, Brusch, Lutz, Deutsch, Andreas, Tanaka, Elly M., Chara, Osvaldo
Formato: Articulo
Lenguaje:Inglés
Publicado: 2016
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/85906
Aporte de:
id I19-R120-10915-85906
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Exactas
Axolotl
Regeneration
Extremities
Blastema formation
spellingShingle Ciencias Exactas
Axolotl
Regeneration
Extremities
Blastema formation
Rost, Fabian
Albors, Aida Rodrigo
Mazurov, Vladimir
Brusch, Lutz
Deutsch, Andreas
Tanaka, Elly M.
Chara, Osvaldo
Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls
topic_facet Ciencias Exactas
Axolotl
Regeneration
Extremities
Blastema formation
description Axolotls are unique in their ability to regenerate the spinal cord. However, the mechanisms that underlie this phenomenon remain poorly understood. Previously, we showed that regenerating stem cells in the axolotl spinal cord revert to a molecular state resembling embryonic neuroepithelial cells and functionally acquire rapid proliferative divisions (Rodrigo Albors et al., 2015). Here, we refine the analysis of cell proliferation in space and time and identify a high- proliferation zone in the regenerating spinal cord that shifts posteriorly over time. By tracking sparsely-labeled cells, we also quantify cell influx into the regenerate. Taking a mathematical modeling approach, we integrate these quantitative datasets of cell proliferation, neural stem cell activation and cell influx, to predict regenerative tissue outgrowth. Our model shows that while cell influx and neural stem cell activation play a minor role, the acceleration of the cell cycle is the major driver of regenerative spinal cord outgrowth in axolotls.
format Articulo
Articulo
author Rost, Fabian
Albors, Aida Rodrigo
Mazurov, Vladimir
Brusch, Lutz
Deutsch, Andreas
Tanaka, Elly M.
Chara, Osvaldo
author_facet Rost, Fabian
Albors, Aida Rodrigo
Mazurov, Vladimir
Brusch, Lutz
Deutsch, Andreas
Tanaka, Elly M.
Chara, Osvaldo
author_sort Rost, Fabian
title Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls
title_short Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls
title_full Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls
title_fullStr Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls
title_full_unstemmed Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls
title_sort accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls
publishDate 2016
url http://sedici.unlp.edu.ar/handle/10915/85906
work_keys_str_mv AT rostfabian acceleratedcelldivisionsdrivetheoutgrowthoftheregeneratingspinalcordinaxolotls
AT alborsaidarodrigo acceleratedcelldivisionsdrivetheoutgrowthoftheregeneratingspinalcordinaxolotls
AT mazurovvladimir acceleratedcelldivisionsdrivetheoutgrowthoftheregeneratingspinalcordinaxolotls
AT bruschlutz acceleratedcelldivisionsdrivetheoutgrowthoftheregeneratingspinalcordinaxolotls
AT deutschandreas acceleratedcelldivisionsdrivetheoutgrowthoftheregeneratingspinalcordinaxolotls
AT tanakaellym acceleratedcelldivisionsdrivetheoutgrowthoftheregeneratingspinalcordinaxolotls
AT charaosvaldo acceleratedcelldivisionsdrivetheoutgrowthoftheregeneratingspinalcordinaxolotls
bdutipo_str Repositorios
_version_ 1764820489093513218